首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   10篇
  国内免费   1篇
测绘学   2篇
大气科学   28篇
地球物理   43篇
地质学   54篇
海洋学   25篇
天文学   9篇
综合类   1篇
自然地理   10篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1979年   6篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1969年   1篇
  1960年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
21.
The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951–2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northern East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.  相似文献   
22.
Flooding on the German Rhine during the 20th century was tested for trends and assessed to identify causal mechanisms driving worsening of flooding. A review of previous research outlines the range of impacts due to climate change, land‐use shifts, and river regulation. Analysis of hydrologic data, especially of the long record at Cologne, documents statistically significant increases in both flood magnitudes and frequencies. Specific‐gauge analysis, which isolates the effects of channel modification, documents that 20th century river engineering has caused little of the observed increase in flooding on the German Rhine. Precipitation records from the Rhine basin confirm that flood magnification has been driven by upstream factors, including an increase in flood‐producing precipitation of roughly 25% during the past 100 years and increases in runoff yields. In addition, agricultural land‐use records suggest that flood magnification can be partially explained by 20th century trends documenting intensification and industrialization of German agriculture. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
23.
This paper synthesizes the results from the model intercomparison exercise among regionalized global energy-economy models conducted in the context of the RECIPE project. The economic adjustment effects of long-term climate policy are investigated based on the cross-comparison of the intertemporal optimization models ReMIND-R and WITCH as well as the recursive dynamic computable general equilibrium model IMACLIM-R. A number of robust findings emerge. If the international community takes immediate action to mitigate climate change, the costs of stabilizing atmospheric CO2 concentrations at 450?ppm (roughly 530?C550?ppm-e) discounted at 3% are estimated to be 1.4% or lower of global consumption over the twenty-first century. Second best settings with either a delay in climate policy or restrictions to the deployment of low-carbon technologies can result in substantial increases of mitigation costs. A delay of global climate policy until 2030 would render the 450?ppm target unachievable. Renewables and CCS are found to be the most critical mitigation technologies, and all models project a rapid switch of investments away from freely emitting energy conversion technologies towards renewables, CCS and nuclear. Concerning end use sectors, the models consistently show an almost full scale decarbonization of the electricity sector by the middle of the twenty-first century, while the decarbonization of non-electric energy demand, in particular in the transport sector remains incomplete in all mitigation scenarios. The results suggest that assumptions about low-carbon alternatives for non-electric energy demand are of key importance for the costs and achievability of very low stabilization scenarios.  相似文献   
24.
Trends and periodicity analyses can provide information on climate variability inherent in a particular variable. In this study, trend tests and spectral analysis are used to examine the existence of trends and cycles in temperature series (1901–2000) of Nigeria. Periods 1901–1929 and 1942–1980 exhibited cooling trends while 1930–1941 and 1981–2000 showed warming trends. The warmest years in Nigeria were 1941, 1935, 1931 and 1987. The coldest years were 1929, 1975, 1925 and 1974. Whereas no significant trends were detected for 1901–1930 period, the standard period 1931–1960 was marked by significant cooling while 1961–1990 was marked with significant warming. Annual temperature has risen by 0.03?°C/decade during the last century. The overall warming was mostly confined to the south of 12°N especially during April and June. Changes in minimum temperature are higher than that of maximum temperature. The quasi-biennial oscillation was found in annual data for all the six zones with periods of about 2–4?years. Nigeria landscape is under strong North Atlantic Oscillation influence in dry season and under ENSO influence during wet season. Annual temperature series was also found to exhibit significant negative correlation with SOI.  相似文献   
25.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
26.
27.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
28.
Discharge of groundwater into lakes (lacustrine groundwater discharge, LGD) can play a major role in water balances of lakes. Unfortunately, studies often neglect this input path because of methodological difficulties in its determination. Direct measurements of LGD are labor‐consuming and prone to error. The present study uses both spatially variable hydraulic‐head data and meteorological data to estimate groundwater input by LGD and lake water output through infiltration. The study sites are two shallow, groundwater‐fed lakes without any surface inflows or outflows. Horizontally interpolated groundwater heads were combined with lake water levels to obtain vertical hydraulic gradients between the aquifer and the lake, which are separated by a thick layer of lake bed sediment which has a much lower hydraulic conductivity than the underlying aquifer. By fitting the hydraulic gradient to the results of a simple mass balance and considering the process of clogging, we were able to estimate the hydraulic conductivity of the lake bed sediments. We calculated groundwater inputs by LGD and lake water outputs by infiltration on an annual basis. Although our method requires several assumptions, the results are reasonable and provide useful information about the exchange between the aquifer and the lake, which can, for example, be used for the calculation of nutrient mass balances.  相似文献   
29.
Elevated As concentrations in groundwater of the Huhhot basin (HB), Inner Mongolia, China, and the western Bengal basin (WBB), India, have been known for decades. However, few studies have been performed to comprehend the processes controlling overall groundwater chemistry in the HB. In this study, the controls on solute chemistry in the HB have been interpreted and compared with the well-studied WBB, which has a very different climate, physiography, lithology, and aquifer characteristics than the HB. In general, there are marked differences in solute chemistry between HB and WBB groundwaters. Stable isotopic signatures indicate meteoric recharge in the HB in a colder climate, distant from the source of moisture, in comparison to the warm, humid WBB. The major-ion composition of the moderately reducing HB groundwater is dominated by a mixed-ion (Ca–Na–HCO3–Cl) hydrochemical facies with an evolutionary trend along the regional hydraulic gradient. Molar ratios and thermodynamic calculations show that HB groundwater has not been affected by cation exchange, but is dominated by weathering of feldspars (allitization) and equilibrium with gibbsite and anorthite. Mineral weathering and mobilization of As could occur as recharging water flows through fractured, argillaceous, metamorphic or volcanic rocks in the adjoining mountain-front areas, and deposits solutes near the center of the basin. In contrast, WBB groundwater is Ca–HCO3-dominated, indicative of calcite weathering, with some cation exchange and silicate weathering (monosiallitization).  相似文献   
30.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号