首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
大气科学   10篇
地球物理   17篇
地质学   26篇
海洋学   5篇
天文学   1篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
11.
The reactivity of dissolved iron compounds towards different pollutants and photooxidants in atmospheric liquid water depends upon the oxidation state and speciation of iron. Our measurements of the oxidation state of dissolved iron eluted from aerosol particles (Dae: 0.4–1.6 m) collected in the urban atmosphere of Ljubljana showed that a large fraction of the iron content is present as Fe(II). The concentration ratio [Fe(II)]/[Fe(III)] varied between 0.9 and 3.1. The kinetics of S(IV) autoxidation catalyzed by Fe(II) under the conditions representative for acidified atmospheric liquid water and the influence of oxalate on this reaction under dark conditions was investigated. The reaction rate is the same if Fe(II) or Fe(III) is used as a catalyst under the condition that Fe(II) can be oxidized in Fe(III), which is the catalytically active species. Oxalate has a strong inhibiting effect on the S(IV) autoxidation in the presence of Fe(II). The reaction is autocatalytic with an induction period, that increases with higher concentrations of oxalate. The inhibiting effect of oxalate differs according to whether iron is initially in the Fe(II) or Fe(III) state. However, in both cases the inhibition by oxalate is a result of the formation of complexes with the catalyst.  相似文献   
12.
For the extension of the radiocarbon calibration curve beyond 10000 14C y BP, laminated sediment from Lake Soppensee (central Switzerland) was dated. The radiocarbon time scale was obtained using accelerator mass spectrometry (AMS) dating of terrestrial macrofossils selected from the Soppensee sediment. Because of an unlaminated sediment section during the Younger Dryas (10000–11000 14C y BP), the absolute time scale, based on counting annual layers (varves), had to be corrected for missing varves. The Soppensee radiocarbon-verve chronology covers the time period from 6000 to 12000 14C y BP on the radiocarbon time scale and 7000 to 13000 calendar y BP on the absolute time scale. The good agreement with the tree ring curve in the interval from 7000 to 11450 cal y BP (cal y indicates calendar year) proves the annual character of the laminations. The ash layer of the Vasset/Killian Tephra (Massif Central, France) is dated at 8230±140 14C y BP and 9407±44 cal y BP. The boundaries of the Younger Dryas biozone are placed at 10986±69 cal y BP (Younger Dryas/Preboreal) and 1212±86 cal y BP (Alleröd/Younger Dryas) on the absolute time scale. The absolute age of the Laacher See Tephra layer, dated with the radiocarbon method at 10 800 to 11200 14C y BP, is estimated at 12350 ± 135 cal y BP. The oldest radiocarbon age of 14190±120 14C y BP was obtained on macrofossils of pioneer vegetation which were found in the lowermost part of the sediment profile. For the late Glacial, the offset between the radiocarbon (10000–12000 14C y BP) and the absolute time scale (11400–13000 cal y BP) in the Soppensee chronology is not greater than 1000 years, which differs from the trend of the U/Th-radiocarbon curve derived from corals.  相似文献   
13.
In the northwestern part of nienik metamorphic unit the central position is occupied by metabasites of three textural types: gabbro-amphibolites, coarse-grained amphibolites, fine-grained laminated amphibolites. The last type is widespread in the area of 12 km2, forming a belt in the vicinity of Trzebieszowice south of Kodzko. Metabasites separate two zones in nienik metamorphic unit Structural directions in both these zones are quite different. Cloos (1922) used the term »virgation« to describe this phenomenon. Recently, structural analysis (Wojciechowska 1980) suggests the key position of metabasites for the origin of the virgation. Their chemical composition corresponds to calc-alcaline series of island arc volcanites (Ewart &Bryan 1972). Similar is the composition of amphibolites from Kodzko metamorphic unit north of Kodzko. Together with metabasite bodies of eastern and south-eastern crust of the Karkonosze granitoids massif (Narebski 1981), they form a spatial pattern which may be connected with dextral transform fault. Differentiated displacement of rock bodies along such a structural line may be responsible for the observed virgation in nienik metamorphic unit.Investigation of mesostructures enabled to construct temporal model of deformation successions for the NW part of the nienik metamorphic unit since Vendian (Lower Cambrian when the sedimentation started to Upper Carboniferous) Permian consolidation of Kodzko granitoids massif which was formed at the end of crystalline complex development.
Zusammenfassung Im nordwestlichen Teil der metamorphen Einheit von nienik liegen in zentraler Position Metabasite, die sich in drei Typen teilen lassen: Gabroamphibolite, grobkörnige Amphibolite und feinkörnig laminierte Amphibolite. Die letzteren sind auf ein Gebiet von 12 km2 erschlossen und formen eine Zone nahe bei Trzebieszowice südlich von Kodzko. Metabasite teilen die metamorphe Einheit von nienik in 2 Zonen, die unterschiedliche Strukturrichtungen aufweisen. H.Cloos (1922) bezeichnete dieses Phänomen als »Virgation«. Neuere Strukturanalysen (Wojciechowska 1980) weisen den Metabasiten für die Entstehung dieser Virgation eine Schlüsselposition zu. Der Chemismus dieser Metabasite entspricht Kalk-Alkali-Serien eines Inselbogentypes (Ewart &Bryan 1972). ähnlich ist die Zusammensetzung von Amphiboliten in der Kodzko-Einheit. Zusammen mit Metabasiten aus dem östlichen und südöstlichen Teil des Granitoid-Massives von Karkonosze (Narebski 1981) bilden sie ein Strukturmuster, das man mit einer dextralen Transform-Verschiebung in Verbindung bringen kann. Blattverschiebungen entlang einer derartigen tektonischen Struktur werden für die Virgation der metamorphen Einheit von nienik verantwortlich gemacht. Eine Strukturanalyse erlaubt ein zeitliches Modell der Deformationsabfolgen im nordwestlichen Teil der metamorphen Einheit von nienik vorzunehmen. Die Sedimentation beginnt im Wendium/Unterkambrium und reicht bis in das Oberkarbon/Perm, als das Granitoid-Massiv von Kodzko nach Beendigung der Deformation der Kristallinkomplexe konsolidiert wurde.

Résumé Dans l'unité métamorphique de Snieznik, la partie centrale est occupée par des métabasites de trois types texturaux: des gabbro-amphibolites, des amphibolites grenues et des amphibolites laminées à grain fin. Ce dernier type est confiné à une zone allongée de 12 km2 aux environs de Trzebieszowice, au Sud de Klodsko. Les métabasites séparent le cristallin de Snieznik en deux zones qui diffèrent par leurs direction structurales.CLOOS (1922) a utilisé le terme de »virgation« pour désigner ce phénomène. Des analyses structurales récentes (Wojciechowska 1980) conduisent à attribuer aux métabasites une position-clé à l'origine de cette virgation. Leur chimisme correspond aux séries calcoalcalines d'arcs insulaires (Ewart etBryan 1972). Les amphibolites de l'unité métamorphique de Klodzko ont des compositions similaires. Elles forment avec les métabasites de la bordure est et sud-est du massif granitoÏde de Karkonosze (Narebski 1981) un ensemble que l'on peut associer à une faille transformante dextre. Des déplacements relatifs le long d'une telle ligne structurale peuvent Être tenus pour responsables de la virgation observée dans l'unité de Snieznik.De l'étude des mésostructures on déduit un modèle de l'histoire des déformations successives qui ont affecté la partie nord-ouest de l'unité de Snieznik depuis le début de la sédementation, au Vendien / Eocambrien jusqu'à la consolidation du massif granitoÏde de Klodzko qui marque, au Carbonifère supérieur / Permien la fin de l'histoire du complexe cristallin.

- - , . 1922 . Q, S L. . , .
  相似文献   
14.
A study of inorganic iodine speciation in the water column of a naturally eutrophicated anchialine pond (Rogoznica Lake, East Adriatic Coast) was conducted in a period between April and July 2004 to obtain information how close the inorganic iodine system is to that of inorganic nutrients during spring, when phytoplankton activity is at maximum, and how the system changes up to summer, when highly reducible redox-conditions prevail in deep water.  相似文献   
15.
16.
Many paleoclimate and landscape change studies in the American Midwest have focused on the Late Glacial and early Holocene time periods (~ 16–11 ka), but little work has addressed landscape change in this area between the Last Glacial Maximum and the Late Glacial (~ 22–16 ka). Sediment cores were collected from 29 new lake and bog sites in Ohio and Indiana to address this gap. The basal radiocarbon dates from these cores show that initial ice retreat from the maximal last-glacial ice extent occurred by 22 ka, and numerous sites that are ~ 100 km inside this limit were exposed by 18.9 ka. Post-glacial environmental changes were identified as stratigraphic or biologic changes in select cores. The strongest signal occurs between 18.5 and 14.6 ka. These Midwestern events correspond with evidence to the northeast, suggesting that initial deglaciation of the ice sheet, and ensuing environmental changes, were episodic and rapid. Significantly, these changes predate the onset of the Bølling postglacial warming (14.8 ka) as recorded by the Greenland ice cores. Thus, deglaciation and landscape change around the southern margins of the Laurentide Ice Sheet happened ~ 7 ka before postglacial changes were felt in central Greenland.  相似文献   
17.
Closed, isolated small systems, as the representatives of a “unique-environmental feature”, are valuable natural laboratories for studying different biogeochemical processes. The saline Rogoznica Lake (“Dragon Eye”), situated on the Eastern Adriatic coast is such a system (10 276 m2, 15 m deep) typical of many stratified, sulfide rich water bodies. The depth of mixolimnion changes seasonally and it is greatly influenced by meteorological conditions, i.e. temperature and rainfall. Vertical mixing usually occurs during winter when cold, oxygen-rich water from the surface sinks downwards.  相似文献   
18.
19.
Coastal and inshore areas of the Great Barrier Reef lagoon receive substantial amounts of material from adjacent developed catchments, which can affect the ecological integrity of coral reefs and other inshore ecosystems. A 5-year water quality monitoring dataset provides a 'base range' of water quality conditions for the inshore GBR lagoon and illustrates the considerable temporal and spatial variability in this system. Typical at many sites were high turbidity levels and elevated chlorophyll a and phosphorus concentrations, especially close to river mouths. Water quality variability was mainly driven by seasonal processes such as river floods and sporadic wind-driven resuspension as well as by regional differences such as land use. Extreme events, such as floods, caused large and sustained increases in water quality variables. Given the highly variable climate in the GBR region, long-term monitoring of marine water quality will be essential to detect future changes due to improved catchment management.  相似文献   
20.
Vlaykov Vruh–Elshitsa represents the best example of paired porphyry Cu and epithermal Cu–Au deposits within the Late Cretaceous Apuseni–Banat–Timok–Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition. At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic Cu–Bi–Te–Pb–Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two compositionally different types of ores—massive pyrite and copper–pyrite bodies. Vlaykov Vruh shares features with typical porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart, respectively. The magmatic–hydrothermal system at Vlaykov Vruh–Elshitsa produced much smaller deposits than similar complexes in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of the magmas. 87Sr/86Sr(i) ratios of igneous rocks in the range of 0.70464 to 0.70612 and 143Nd/144Nd(i) ratios in the range of 0.51241 to 0.51255 indicate mixed crustal–mantle components of the magmas dominated by mantellic signatures. The epsilon Hf composition of magmatic zircons (+6.2 to +9.6) also suggests mixed mantellic–crustal sources of the magmas. However, Pb isotopic signatures of whole rocks (206Pb/204Pb = 18.13–18.64, 207Pb/204Pb = 15.58–15.64, and 208Pb/204Pb = 37.69–38.56) along with common inheritance component detected in magmatic zircons also imply assimilation processes of pre-Variscan and Variscan basement at various scales. U–Pb zircon and rutile dating allowed determination of the timing of porphyry ore formation at Vlaykov Vruh (85.6 ± 0.9 Ma), which immediately followed the crystallization of the subvolcanic dacitic bodies at Elshitsa (86.11 ± 0.23 Ma) and the Elshitsa granite (86.62 ± 0.02 Ma). Strontium isotope analyses of hydrothermal sulfates and carbonates (87Sr/86Sr = 0.70581–0.70729) suggest large-scale interaction between mineralizing fluids and basement lithologies at Elshitsa–Vlaykov Vruh. Lead isotope compositions of hydrothermal sulfides (206Pb/204Pb = 18.432–18.534, 207Pb/204Pb = 15.608–15.647, and 208Pb/204Pb = 37.497–38.630) allow attribution of ore-formation in the porphyry and epithermal deposits in the Southern Panagyurishte district to a single metallogenic event with a common source of metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号