首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   11篇
  国内免费   8篇
测绘学   8篇
大气科学   8篇
地球物理   40篇
地质学   85篇
海洋学   2篇
天文学   6篇
综合类   8篇
自然地理   13篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   7篇
  2018年   16篇
  2017年   14篇
  2016年   10篇
  2015年   12篇
  2014年   15篇
  2013年   18篇
  2012年   5篇
  2011年   6篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1986年   1篇
  1924年   2篇
排序方式: 共有170条查询结果,搜索用时 250 毫秒
51.
Hydrogeology Journal - A coupled simulation-optimization model (SOM) is developed in this work that links the US Environmental Protection Agency’s Storm Water Management Model (SWMM) with a...  相似文献   
52.
Seafloor topography certainly has an impact on ocean circulation in different ways. Due to this assumption, the sea surface currents calculated by optical flow (Horn–Schunck) and geostrophic currents methods are analyzed to observe this impact. Pair of sea surface temperature imageries, calculated sea surface height and sea level anomaly are showed beside depth map in areas with meaningful bathymetric features such as underwater mountains and pools. The reason for the formation of some eddies in the Caspian Sea and Indian Ocean is concluded from the location of pools and knolls. In this study, in addition to introducing new time span for calculating geostrophic currents, Ocean Surface Current Analyses Real-Time (OSCAR) currents are applied to validate our estimated currents. Variety of products such as sea surface temperature imageries, OSCAR currents, depth map, calculated results like sea level anomaly and absolute dynamic topography and estimated currents via optical flow and geostrophic currents have been collected in this paper to make very detailed investigation on depth effect on mentioned water parameters. Results show that impacts of knolls and pools are meaningfully clear in optical flow and geostrophic currents in shaping and rationing water motions.  相似文献   
53.
Flyrock is an adverse effect produced by blasting in open-pit mines and tunneling projects. So, it seems that the precise estimations and risk level assessment of flyrock are essential in minimizing environmental effects induced by blasting. The first aim of this research is to model the risk level associated with flyrock through rock engineering systems (RES) methodology. In this regard, 62 blasting were investigated in Ulu Tiram quarry, Malaysia, and the most effective parameters of flyrock were measured. Using the most influential parameters on flyrock, the overall risk of flyrock was obtained as 32.95 which is considered as low to medium degree of vulnerability. Moreover, the second aim of this research is to estimate flyrock based on RES and multiple linear regression (MLR). To evaluate performance prediction of the models, some statistical criteria such as coefficient of determination (R2) were computed. Comparing the values predicted by the models demonstrated that the RES has more suitable performance than MLR for predicting the flyrock and it could be introduced as a powerful technique in this field.  相似文献   
54.
The Influence of Shearing Velocity on Shear Behavior of Artificial Joints   总被引:1,自引:1,他引:0  
In this paper, the effects of shear velocity on the shearing behavior of artificial joints have been studied at different normal stress levels. Here, artificial joints with planar and rough surfaces were prepared with the plaster (simulating soft rock joints) and concrete (medium-hard rock joints) materials. The rough joints had triangular shaped asperities with 10° and 20° inclination angles. Direct shear tests were performed on these joints under various shear velocities in the range of 0.3–30 mm/min. The planar plaster–plaster and planer concrete–concrete joints were sheared at three levels of normal stress under constant normal load boundary condition. Also, the rough plaster–plaster and concrete–concrete joints were sheared at one level of normal stress under constant normal stiffness boundary condition. The results of the shear tests show that the shearing parameters of joints, such as shear strength, shear stiffness and friction angle, are related to the shear velocity. Shear strength of planar and rough plaster–plaster joints were decreased when the shear velocity was increased. Shear strength of concrete joints, except for rough joints with 10° inclination, increased with increasing shear velocity. Regardless of the normal stress level, shear stiffness of both planar plaster–plaster and concrete–concrete joints were decreased when the shear velocity was increased.  相似文献   
55.
The standard procedure in Quebec, Canada, for evaluating the failure of an embankment dam, per the Loi sur la sécurité des barrages, specifies a 30-min-long failure scenario with a breach width equal to four times the maximal height of the dam. We demonstrate a new method for evaluating the flood overtopping failure scenario for embankment dams with concrete upstream slope protection, using Toulnustouc dam for example computations. Our new methodology computes safety factors for a range of potential failure mechanisms taking into account geotechnical, hydraulic, and structural factors. We compile the results of our investigations of the various dam failure mechanisms and compare the corresponding dam failure hydrographs to the current hydrograph specified in the standard analysis procedures. Our investigations tend to invalidate the current standard procedures for evaluating the failure of rock-fill dams with concrete upstream faces, by indicating that the current standard procedures underestimate the peak failure discharge and overestimate the time to the peak discharge.  相似文献   
56.
The spatial sampling offered by TOPEX and Jason series of satellite radar altimeters and its continuity during the last twenty years are major assets to provide an improved vision of the global mean sea level (GMSL). The objective of this paper is to examine the recent GMSL variations (1993–2012) and to investigate the correlation between the GMSL and ENSO (El Niño-southern oscillation) episodes. For this purpose, a mean sea level anomalies time series, obtained from TOPEX, Jason-1 and Jason-2 measurements, is used to determine the trend of GMSL changes by using a simplified form of an unobserved components model (namely UCM). Then, to investigate the impact of the ENSO phenomenon on the GMSL changes, we considered the sea surface temperature anomalies (SSTA) index over the Niño3 region (5N–5S 150W–90W). Cross wavelet transform and wavelet coherence analysis are performed to expose common power between the GMSL changes and the SSTA index and their relative phase in the time–frequency space. The results indicate that there are in the estimated GMSL's trend a number of fluctuations over short periods that are least partly related to the El Niño/La Niña episodes. Cross wavelet transform and wavelet coherence analysis indicate that a significant correlation between GMSL and ENSO occurred during 1997–1998, 2006–2007, 2009–2010 El Niño events and 2007–2008 and 2010–2011 La Niña ones. All these areas show in-phase relationship, suggesting that GMSL and SSTA index vary synchronously.  相似文献   
57.
Shortage of water resources in arid and semi-arid areas causes water supply to be one of the most important subjects and major concerns within NGO and governments’ policies in recent years. The Shahrekord Plain aquifer system is located in a semi-arid area and acts as a key source of water supply. Groundwater management in this area is thus very important. Although change in the climatological factors is not possible, long-term fluctuation studies can help in managing the available water resources to overcome from drought or decrease its negative impact. The hydrodynamic study of the aquifer system coupled with the drought indices in each region can be useful in making decisions related to the hydro-ecosystem management of that region. In this article, hydrodynamics of the aquifer system of the Shahrekord Plain coupled with the ratio of P/PET as a drought index, are assessed on the long term. In Shahrekord Plain aquifer, there is a short-term seasonal fluctuation, which is increased by overexploitation during the dry season, when water is needed for irrigation. The hydrodynamic behavior of the plain aquifer on the long term is changing. This fluctuation at first is a function of time. Secondly, it is spatially dependent. Groundwater behavior is directly sensitive to the variation of drought index, both seasonally and on the long term.  相似文献   
58.
The sea level change is a crucial indicator of our climate. The spatial sampling offered by satellite altimetry and its continuity during the last 18 years are major assets to provide an improved vision of the sea level changes. In this paper, we analyze the University of Colorado database of sea level time series to determine the trends for 18 large ocean regions by means of the automatic trend extraction approach in the framework of the singular spectrum analysis technique. Our global sea level trend estimate of 3.19 mm/year for the period from 1993 to 2010 is comparable with the 3.20-mm/year sea level rise since 1993 calculated by AVISO Altimetry. However, the trends from the different ocean regions show dissimilar patterns. The major contributions to the global sea level rise during 1993–2010 are from the Indian Ocean (3.78?±?0.08 mm/year).  相似文献   
59.
Fluid storage systems, such as oil, gas, magma or water reservoirs, are often controlled by the host rock structure and faulted terrain. In sedimentary basins, where no direct information about underlying structure is available, the pattern of ground deformation may allow us to assess the buried fault arrangement. We provide an example in the semi-arid area of Iran, in the Kashmar Valley, a region subject to land subsidence due to water overexploitation. Geodetically determined subsidence rates in the Kashmar Valley exceed 15–30 cm yr−1. The pattern of surface deformation is strongly non-uniform and displays NE–SW elongated bowls of subsidence. The trend resembles old Cretaceous-to-Tertiary faults that evolved during early alpine tectonic deformation. Although these early alpine structures are considered tectonically inactive in the present day, the observed land subsidence pattern indicates significant structural control on the geometry of the aquifer basin and its deformation during reservoir drainage.  相似文献   
60.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号