首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   3篇
测绘学   2篇
大气科学   1篇
地球物理   5篇
地质学   11篇
海洋学   1篇
天文学   1篇
自然地理   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2011年   3篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
11.
Underground contamination water by herbicides depends on the interactions between their molecules with physical and chemical soil characteristics and climatic conditions. Studies with columns can estimate the leaching potential of herbicides in soils. This study aimed to determine the effect of soil pH on tebuthiuron leaching, and capacity of bioindicators to detect tebuthiuron residues in three Brazilian soils. Cucumber plants (Cucumis sativus) were more negatively affected when grown in soils with lower amounts of organic matter and clay, and in these soils, the tebuthiuron levels reached greater depths in the column. There was a positive correlation between tebuthiuron concentration and cucumber intoxication, and a negative correlation between tebuthiuron concentration and dry matter cucumber in all soils. The tebuthiuron leached up to 50 cm depth even in soils with higher organic matter and clay content. The increasing of soil pH can affect the leaching of nonionic herbicides, and liming practice may elevate the environmental contamination risk by tebuthiuron. The bioindicator method using Cucumis sativus is viable and can be recommended to detect tebuthiuron concentrations above 0.2 mg kg?1.  相似文献   
12.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   
13.
Mathematical Geosciences - In mine planning, geospatial estimates of variables such as comminution indexes and metallurgical recovery are extremely important to locate blocks for which the energy...  相似文献   
14.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through ...  相似文献   
15.
16.
Quantitative analysis of macroecological patterns for late Pleistocene assemblages can be useful for disentangling the causes of late Quaternary extinctions (LQE). However, previous analyses have usually assumed linear relationships between macroecological traits, such as body size and range size/range shift, that may have led to erroneous interpretations. Here, we analyzed mammalian datasets to show how macroecological patterns support climate change as an important driver of the LQE, which is contrary to previous analyses that did not account for more complex relationships among traits. We employed quantile regression methods that allow a detailed and fine-tuned quantitative analysis of complex macroecological patterns revealed as polygonal relationships (i.e., constraint envelopes). We showed that these triangular-shaped envelopes that describe the macroecological relationship between body size and geographical range shift reflect nonrandom extinction processes under which the large-bodied species are more prone to extinction during events of severe habitat loss, such as glacial/interglacial transitions. Hence, we provide both a theoretical background and methodological framework to better understand how climate change induces body size-biased species sorting and shapes complex macroecological patterns.  相似文献   
17.
We have conducted an investigation on the effects that the extracts of a non-carbonaceous meteorite could have on the germination and growth of plants and the ability of non-carbonaceous meteoritic resource to serve as nutrient source for young plants of edible types. Selected plants were two dicotyledons (Lycopersicon esculentum and Daucus carota) and one monocotyledon (Zea mays). Solution cultures were developed using seeds, seedlings and seed-embryos. Meteoritic powder was obtained from the Vigirima mesosiderite, which was analyzed by X-ray diffraction and atomic absorption spectrometry (AAS). Results showed that extracts having variable concentrations of meteoritic matter favored an earlier germination in some plant species but the increase of the concentrations produced a decreased germination. However, total germination rate was higher in the presence of meteoritic extracts than in the presence of controls in the all species. A high metabolic yield in the protein synthesis was seen in dicotyledons utilizing Type-A and B extracts having concentrations of 4.16-8.33×103 mg l−1. Phaeophytinization index and chlorophyll a/b ratio, suggesting a negative effect of the heavy metals or acidic ions over the photosynthetic activity when extracts having high meteoritic concentrations were utilized. However, a higher chlorophyll (a) production in comparison to that of chlorophyll (b) was seen in extracts (Type-A and -B) with low concentrations of meteoritic matter. On the other hand, Z. mays seed-embryos growing in extracts (Type-D) having 3.53×104 mg l−1 of meteoritic matter showed a protein production (9.81×10−2 mg protein mg wet wt−1) higher than that observed in seed-embryos coming from extracts having lower concentrations. However, in Murashige medium, the seed-embryos exhibited a enhanced growth and a relatively higher protein production (10.3×10−2 mg protein mg wet wt.−1). Further, chlorophyll (a+b) synthesis was higher in Murashige medium than in meteoritic extracts but chlorophyll a/b ratio was <1 in all extracts and controls. Our results suggest the usefulness of the non-carbonaceous meteoritic resource as a complementary soil component or fertilizers for culture of edible plants in space settlements and mainly for the production of young plants due to the positive metabolic effects on the chlorophyll synthesis, mitochondrial metabolism and cellular division caused by PO43−, Fe2+, Cu2+ and Ca2+ ions. Earlier germination responses obtained in the present experiments demonstrated the possibility to utilize germination chambers in space having wet substrates containing meteoritic-powder solutions to obtain a higher number of seedlings in a minimum degree of time. These results also reveal the biological potential of this non-carbonaceous meteoritic matter for the growth of organisms in the early Earth, Mars, and probably in other planetary bodies beyond our Solar system.  相似文献   
18.
The installation of a rural settlement complex in the watershed stream Indaiá has promoted changes in land-use and vegetation cover dynamics; however, the effects of intensive agriculture and cattle farming in rural settlements on soil loss rates are not well known. Predictive models implemented in geographic information systems have proven to be effective tools for estimating erosive processes. The erosion predictive model Revised Universal Soil Loss Equation (RUSLE) is a useful tool for analyzing, establishing and managing soil erosion. RUSLE has been widely used to estimate annual averages of soil loss, by both interrill and rill erosion, worldwide. Therefore, the aim of this work was to estimate the soil loss in the watershed stream Indaiá, using the RUSLE model and geoprocessing techniques. To estimate soil loss, the following factors were spatialized: erosivity (R), erodibility (K), topography (LS), land-use and management (C) and conservation practices (P); the annual soil loss values were calculated using the RUSLE model equation. The estimated value of soil loss in the hydrographic basin ranged from 0 to 4082.16 Mg ha?1 year?1 and had an average value of 47.81 Mg ha?1 year?1. These results have demonstrated that 68.16 % of the study area showed little or no soil loss based on the Food and Agriculture Organization’s (FAO 1980) classification. When comparing the average value of soil loss obtained using the RUSLE model with the Natural Potential for Erosion, a 16-fold reduction in soil was found, which highlighted the fact that vegetation cover (C factor) has a greater influence than other factors (R, K and LS) on soil loss prediction attenuation. These results lead to the conclusion that soil loss occurs by different methods in each settlement in the basin and that erosive processes modeled by geoprocessing have the potential to contribute to an orderly land management process.  相似文献   
19.
The S?o Sebasti?o Channel, NE S?o Paulo State, Brazil, is an area of environmental interest of that state not only because of the tourism, but also because of the presence of the most important oil terminal of Brazil, the PETROBRAS Maritime Terminal (DTCS). Sediment samples were collected at 15 sites in the channel, extracted and analyzed by GC/FID and GC/MS for composition and levels of the following organic geochemical markers: aliphatic hydrocarbons (normal and isoprenoid alkanes), petroleum biomarkers, linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs). The total concentrations varied from 0.04 to 8.53 micorg g(-1) for aliphatics, from 51.1 to 422.0 ng g(-1) for petroleum biomarkers, from 12.6 to 27.7 ng g(-1) for LABs and from 20.4 to 200.3 ng g(-1) for PAHs. The PETROBRAS Maritime Terminal (DTCS), Sao Sebasti?o Harbor and sewage outfalls along the area had clear influences on the geochemical marker concentrations, especially at locales in the central and north parts of the channel.  相似文献   
20.
The Catalão I alkaline–carbonatite–phoscorite complex contains both fresh rock and residual (weathering-related) niobium mineralization. The fresh rock niobium deposit consists of two plug-shaped orebodies named Mine II and East Area, respectively emplaced in carbonatite and phlogopitite. Together, these orebodies contain 29 Mt at 1.22 wt.% Nb2O5 (measured and indicated). In closer detail, the orebodies consist of dike swarms of pyrochlore-bearing, olivine-free phoscorite-series rocks (nelsonite) that can be either apatite-rich (P2 unit) or magnetite-rich (P3 unit). Dolomite carbonatite (DC) is intimately related with nelsonite. Natropyrochlore and calciopyrochlore are the most abundant niobium phases in the fresh rock deposit. Pyrochlore supergroup chemistry shows a compositional trend from Ca–Na dominant pyrochlores toward Ba-enriched kenopyrochlore in fresh rock and the dominance of Ba-rich kenopyrochlore in the residual deposit. Carbonates associated with Ba-, Sr-enriched pyrochlore show higher δ18OSMOW than expected for carbonates crystallizing from mantle-derived magmas. We interpret both the δ18OSMOW and pyrochlore chemistry variations from the original composition as evidence of interaction with low-temperature fluids which, albeit not responsible for the mineralization, modified its magmatic isotopic features. The origin of the Catalão I niobium deposit is related to carbonatite magmatism but the process that generated such niobium-rich rocks is still undetermined and might be related to crystal accumulation and/or emplacement of a phosphate–iron-oxide magma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号