首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   47篇
地球物理   27篇
地质学   241篇
海洋学   27篇
天文学   12篇
自然地理   77篇
  2014年   4篇
  2013年   26篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   26篇
  2008年   10篇
  2007年   8篇
  2006年   13篇
  2005年   18篇
  2004年   10篇
  2003年   11篇
  2002年   11篇
  2001年   7篇
  2000年   13篇
  1999年   6篇
  1998年   6篇
  1997年   24篇
  1996年   23篇
  1995年   12篇
  1994年   11篇
  1993年   17篇
  1992年   17篇
  1991年   15篇
  1990年   10篇
  1989年   17篇
  1988年   11篇
  1987年   9篇
  1986年   10篇
  1985年   4篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1969年   3篇
  1967年   4篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有434条查询结果,搜索用时 31 毫秒
221.
Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9°N, –6.9°E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.  相似文献   
222.
We analysed interannual and decadal changes in the atmospheric CO2 concentration gradient (ΔCO2) between Europe and the Atlantic Ocean over the period 1995–2007. Fourteen measurement stations are used, with Mace-Head being used to define background conditions. The variability of ΔCO2 reflects fossil fuel emissions and natural sinks activity over Europe, as well as atmospheric transport variability. The mean ΔCO2 increased by 1–2 ppm at Eastern European stations (∼30% growth), between 1990–1995 and 2000–2005. This built up of CO2 over the continent is predominantly a winter signal. If the observed increase of ΔCO2 is explained by changes in ecosystem fluxes, a loss of about 0.46 Pg C per year would be required during 2000–2005. Even if severe droughts have impacted Western Europe in 2003 and 2005, a sustained CO2 loss of that magnitude is unlikely to be true. We sought alternative explanations for the observed CO2 build-up into transport changes and into regional redistribution of fossil fuel CO2 emissions. Boundary layer heights becoming shallower can only explain 32% of the variance of the signal. Regional changes of emissions may explain up to 27% of the build-up. More insights are given in the Aulagnier et al. companion paper.  相似文献   
223.
Spit systems are seldom recognized in the pre‐Quaternary sedimentary record compared to their common occurrence along present‐day coasts and in Quaternary successions. This lack of recognition may partly be due to the lack of widely accepted depositional models describing the facies characteristics of spit systems and their subaqueous platforms in particular. The Skagen spit system is a large active system that began to form 7150 yr bp and from 5500 bp to Recent times it has prograded 4 m year?1 and accumulated 3·5 × 109 m3 of sand. The spit system provides a unique opportunity for establishing a well‐constrained depositional model because uplift and erosion have made large windows into the preserved facies, while active spit‐forming processes can be examined at the young prograding end of the same system. The depositional model presented here thus builds on excellent outcrops, surface morphology, a well‐defined palaeogeography and detailed C14 age control supplemented with observations from continuous well cores and profiles obtained by ground‐penetrating radar and transient electromagnetic surveys. The factors that have governed the development of the spit system, such as relative sea‐level change, wave and current climate, tidal range, sediment transport and depositional rates are also well‐understood. The sedimentary facies of the spit system are grouped into four principal units consisting from below of thick storm sand beds, dune and bar‐trough deposits, beach deposits and peat beds. These four units form a coarsening and shallowing upward sand‐dominated succession, up to 32 m thick, which overlies offshore silt with a transition zone and is topped by a diastem overlain by young aeolian dune sand. The sedimentary structures and depositional processes are described in detail and integrated into a depositional model, which is compared to other spit systems and linear shoreface models.  相似文献   
224.
Well-preserved siliciclastic domal stromatolites, up to 2 m wide and 1·5 m high, are found in a 10 to 15 m thick interval within the Late Ordovician Eureka Quartzite of Southern Nevada and Eastern California, USA. These stromatolites appear as either isolated features or patchy clusters that contain more than 70% by volume quartz grains; their association with planar, trough and herringbone cross-bedding suggests that they were formed in an upper shoreface environment with high hydraulic energy. In this environment, sand bars or dunes may have provided localized shelter for initial microbial mat colonization. Biostabilization and early lithification of microbial mats effectively prevented erosion during tidal flushing and storm surges, and the prevalence of translucent quartz sand grains permitted light penetration into the sediment, leading to thick microbial mat accretion and the formation of domal stromatolites. Decimetre-scale to metre-scale stromatolite domes may have served as localized shelter and nucleation sites for further microbial mat colonization, forming patchy stromatolite clusters. Enrichment of iron minerals, including pyrite and hematite, within dark internal laminae of the stromatolites indicates anaerobic mineralization of microbial mats. The occurrence of stromatolites in the Eureka Quartzite provides an example of microbial growth in highly stressed, siliciclastic sedimentary environments, in which microbial communities may have been able to create microenvironments promoting early cementation/lithification essential for the growth and preservation of siliciclastic stromatolites.  相似文献   
225.
Abstract— A 0.5 kg stony meteorite associated with a bright bolide seen over southeastern Michigan on 1994 October 20 has been recovered. The circumstances of the fall and recovery of this chondrite, named Coleman, are presented. The most likely trajectory from the observations of the event implies preatmospheric orbital parameters typical of meteorites. Gamma-ray spectrometry of the cosmogenic radionuclides showed that the recovered mass was an interior fragment of a larger body and revealed abnormally high 22Na and 26Al activity. Electron microprobe analysis yielded compositions of Fa24.1 and Fs20.3, which are consistent with an L-chondrite classification. Petrographically, the presence of chondrules, the observed mineralogy and the degree of chondrule-matrix integration suggests assignment to petrologic type 6.  相似文献   
226.
227.
Dissected sand sheets and flow-aligned sand shadows occur near the summit of Muckish Mountain, Co. Donegal. The sand is of medium to fine size and moderately sorted to moderately well sorted. Sand transport by northerly winds is indicated by the location and morphology of the deposits. The source of the sand is a series of friable quartzite beds immediately below the northern edge of the summit plateau. Minor additions of gravel and very coarse sand, derived from the disintegration of plateau clasts, were probably also incorporated within the deposits by aeolian action, although surface wash associated with heavy rain or snowmelt may have mobilized these particles. The absence of diagnostic aeolian transport textures on quartz grain surfaces reflects the short distance/duration of transport. 14C dates indicate two phases of sand sheet accumulation: one between c. 5,300 ande. 2,650 B.P. and again after c. 1,910–1,760B.P. The sand shadows have formed within the last hundred years in response to the construction of small cairns across the plateau. Sand sheet dissection suggests erosion is currently occurring, but this began prior to the late nineteenth century. Present-day sand accumulation is also apparent from the widespread scatter of grains trapped by surface Vegetation. The sand represents the first recognition of aeolian deposition in the uplands of Ireland.  相似文献   
228.
The Zechstein Basin of Poland was an area of widespread cyclical deposition of carbonates and evaporites during Late Permian time. The Zechstein shelves, along both the northern and the southern margins of the basin, were sites of shallow-water sedimentation during the formation of the Main Dolomite and Platy Dolomite, two widespread carbonate units. These units consist of oolitic, peloidal, skeletal, micritic and evaporitic carbonates formed in depositional settings ranging from open marine to coastal (lagoonal, sabkha and salina). Although originally deposited as limestones, the Main Dolomite and Platy Dolomite are inferred to have been completely replaced by dolomite through very early stage (essentially penecontemporaneous) reflux of hypersaline brines. The dolomites of the two basin margins, however, have very different petrographic and isotopic characteristics. Many northern shelf dolomites show early stage calcitization (dedolomitization) and even, in some cases, evidence of a subsequent redolomitization event. These northern shelf samples also have a broad range of carbon and oxygen isotopic ratios (up to 12%0 for oxygen). Samples from the southern shelf, on the other hand, are petrographically much simpler; they do not show complex calcitization and redolomitization patterns. Likewise, their isotopic values are much more tightly clustered, with only about a 5%0 range of oxygen isotopic ratios. The differences between dolomites of the same age from the northern and southern margins are best explained by regional variations in river water influx during episodic exposure events associated with regional or global sea-level fluctuations. The distribution of clastic terrigenous materials and palaeokarstic features indicate that areas of the northern shelf had extensive river input, an influx largely lacking on the southern shelf. Early formed dolomites appear to have been calcitized during sea-level lowstands through the infiltration of meteoric fluids into the evaporitic dolomites created during the previous highstand. In some cases, redolomitization occurred when meteoric fluids were again replaced by hypersaline brines during subsequent sea-level highstands. Although repeated sea-level fluctuations are clearly evident in these strata, it is likely that associated climatic changes (rainfall variations) also played a role in forming these complex diagenetic patterns. Age-equivalent strata from Texas and New Mexico (from sites at much lower palaeolatitudes) show no such alteration patterns; samples from Greenland (slightly higher palaeolatitudes) show even more intense diagenetic alteration during depositional cycles. Thus, the examination of patterns of diagenesis may be useful in interpreting ancient, palaeolatitudinally sensitive climate patterns.  相似文献   
229.
Abstract We use a quantitative model of apatite fission track (AFT) annealing to constrain the thermal evolution of a sedimentary basin and its margin. Apatites deposited in a basin contain several types of information. Provided temperatures remained below ?70°C, they retain much of their provenance thermal signatures and mainly record the thermal evolution of their source area. Above 70°C, the fission tracks in apatite rapidly fade, reflecting the thermal evolution of the basin. Therefore, downhole AFT dates in a well section can in principle be used to assess both the provenance detail (from shallow/cool samples) and the subsequent thermal history in the basin (from the deeper samples). We apply this concept to the south Norwegian offshore and onshore using AFT and ZFT (zircon fission track) data; the latter constrain maximum palaeotemperatures and provide additional provenance information. AFT and ZFT data from three offshore wells in the northern North Sea are shown to contain a record of palaeogeographical and tectonic evolution, closely associated with the Norwegian basement. ZFT data from Middle Triassic sediments suggest a Permian volcanic source. Modelling of AFT data from Jurassic sediments presently residing at temperatures below 70°C indicate rapid cooling during the Late Triassic to Early Jurassic, similar to onshore AFT data. During the Cretaceous minor sediment supply was derived from the Norwegian basement, as evidenced by ZFT ages that do not correlate to the onshore, suggesting that parts of southern Norway were covered with sediments at this time. At the end of the Palaeogene and during the Neogene, the south Norwegian basement again became a major source of elastics. AFT and ZFT data indicate that all wells are presently at maximum temperatures. No significant (> 500 m) erosion events are indicated in the three wells since the Jurassic. AFT data have not yet effectively equilibrated to present-day temperatures as nonzero fission track ages are maintained in sediments currently at temperatures of > 120°C. This implies that the present-day thermal regime has only recently been installed. Probable causes include rapid subsidence and an increase in the geothermal gradient during the last 5 Myr.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号