首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7588篇
  免费   860篇
  国内免费   521篇
测绘学   442篇
大气科学   872篇
地球物理   2614篇
地质学   3114篇
海洋学   599篇
天文学   460篇
综合类   348篇
自然地理   520篇
  2024年   10篇
  2023年   41篇
  2022年   108篇
  2021年   128篇
  2020年   110篇
  2019年   116篇
  2018年   577篇
  2017年   490篇
  2016年   372篇
  2015年   268篇
  2014年   262篇
  2013年   246篇
  2012年   771篇
  2011年   574篇
  2010年   249篇
  2009年   268篇
  2008年   228篇
  2007年   212篇
  2006年   205篇
  2005年   904篇
  2004年   939篇
  2003年   726篇
  2002年   288篇
  2001年   169篇
  2000年   111篇
  1999年   61篇
  1998年   64篇
  1997年   74篇
  1996年   46篇
  1995年   43篇
  1994年   30篇
  1993年   28篇
  1992年   35篇
  1991年   27篇
  1990年   19篇
  1989年   23篇
  1988年   10篇
  1987年   13篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   13篇
  1979年   7篇
  1978年   9篇
  1977年   4篇
  1976年   6篇
  1975年   9篇
  1973年   5篇
排序方式: 共有8969条查询结果,搜索用时 15 毫秒
141.
The phase relations of quaternary systems are generally represented by projections onto ternary compositional planes. Such projections often obscure relationships that would only be evident in a three-dimensional tetrahedral plot. The tetrahedral plot requires that compositions of the minerals and melts be transformed into Cartesian coordinates. It is shown here how this transformation is carried out. The application is demonstrated by tetrahedral plots of experimental melt compositions of partially molten lherzolite. Furthermore, the plot can be used to evaluate whether or not a particular basaltic composition represents a primary melt. The methods are applicable to any four-component system.  相似文献   
142.
143.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
144.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
145.
146.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
147.
This study presents a new method to measure stream cross section without having contact with water. Compared with conventional measurement methods which apply instruments such as sounding weight, ground penetration radar (GPR), used in this study, is a non‐contact measurement method. This non‐contact measurement method can reduce the risk to hydrologists when they are conducting measurements, particularly in high flow period. However, the original signals obtained by using GPR are very complex, different from studies in the past where the measured data were mostly interpreted by experts with special skill or knowledge of GPR so that the results obtained were less objective. This study employs Hilbert–Huang transform (HHT) to process GPR signals which are difficult to interpret by hydrologists. HHT is a newly developed signal processing method that can not only process the nonlinear and non‐stationary complex signals, but also maintain the physical significance of the signal itself. Using GPR with HHT, this study establishes a non‐contact stream cross‐section measurement method with the ability to measure stream cross‐sectional areas precisely and quickly. Also, in comparison with the conventional method, no significant difference in results is found to exist between the two methods, but the new method can considerably reduce risk, measurement time, and manpower. It is proven that the non‐contact method combining GPR with HHT is applicable to quickly and accurately measure stream cross section. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
148.
149.
150.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号