首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   2篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   39篇
地质学   36篇
海洋学   3篇
自然地理   1篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   10篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
31.
The ISA-plasticity is a mathematical platform which allows to propose constitutive models for soils under a wide range of strain amplitudes. This formulation is based on a state variable, called the intergranular strain, which is related to the strain recent history. The location of the intergranular strain can be related to the strain amplitude, information which is used to improve the model for the simulation of cyclic loading. The present work proposes an ISA-plasticity-based model for the simulation of saturated clays and features the incorporation of a viscous strain rate to enable the simulation of the strain rate dependency. The work explains some aspects of the ISA-plasticity and adapts its formulation for clays. At the beginning, the formulation of the model is explained. Subsequently, some comments about its numerical implementation and parameters determination are given. Finally, some simulations are performed to evaluate the model performance with two different clays, namely a Kaolin clay and the Lower Rhine clay. The simulations include monotonic and cyclic tests under oedometric and triaxial conditions. Some of these experiments include the variation of the strain rate to evaluate the viscous component of the proposed model.  相似文献   
32.
A database with about 60 undrained monotonic and cyclic triaxial tests on kaolin is presented. In the monotonic tests, the influences of consolidation pressure, overconsolidation ratio, displacement rate and sample cutting direction have been studied. In the cyclic tests, the stress amplitude, the initial stress ratio and the control (stress vs. strain cycles) have been additionally varied. Isotropic consolidation leads to a failure due to large strain amplitudes with eight-shaped effective stress paths in the final phase of the cyclic tests, while a failure due to an excessive accumulation of axial strain and lens-shaped effective stress paths was observed in the case of anisotropic consolidation with \(q^{\text{ ampl }}< |q^{\text{ av }}|\). The rate of pore pressure accumulation grew with increasing amplitude and void ratio (i.e. decreasing consolidation pressure and overconsolidation ratio). The “cyclic flow rule” well known for sand has been confirmed also for kaolin: With increasing value of the average stress ratio \(|\eta ^{\text{ av }}| = |q^{\text{ av }}|/p^{\text{ av }}, \) the accumulation of deviatoric strain becomes predominant over the accumulation of pore water pressure. The tests on the samples cut out either horizontally or vertically revealed a significant effect of anisotropy. In the cyclic tests, the two kinds of samples exhibited an opposite inclination of the effective stress path. Furthermore, the horizontal samples showed a higher stiffness and could sustain a much larger number of cycles to failure. All data of the present study are available from the homepage of the first author. They may serve for the examination, calibration or improvement in constitutive models dedicated to cohesive soils under cyclic loading, or for the development of new models.  相似文献   
33.
Upper bound analysis of tunnel face stability in layered soils   总被引:3,自引:3,他引:0  
The working face of tunnel constructions has to be kept stable during tunneling to prevent large soil deformations or fatal failure. In layered soils with lower cohesion, failures happen more often and more abrupt than in cohesive soils. Therefore, the maintenance of a proper support pressure at the tunnel working face is of high importance. In this paper, an upper bound analysis is introduced to investigate the minimum support pressure for the face stability in layered soils. A three-dimensional kinematically admissible mechanism for the upper bound analysis is improved to model potential failure within different soil layers. An analytical solution for the support pressure assessment is achieved. The influence of the crossing and cover soil on the face stability is analyzed, respectively. This solution provides an analytical estimation of the minimum support pressure for the face stability. It may be used as a reference for projects under similar conditions.  相似文献   
34.
The earthquake of June 20, 1978 (M6.5) near Thessaloniki, Greece, and the abundant information on damage distribution provided researchers with an opportunity for a more detailed study of earthquake effects. The damage on buildings caused by that earthquake was recorded in several ways. In this paper two of them will be presented and discussed: First, the use of questionnaires filled in by citizens and second, the in situ inspection of the buildings by a team of expert engineers, enriched by data of retrofitting costs, where available. In the current study, the damage data derived from the questionnaires are compared against the ones given by the engineers after they have been both converted to the European Macroseismic Scale 1998 (EMS-98) Damage Grades. It is observed that for EMS-98 damage grades equal and larger than 2 the questionnaire method overestimates damage while for lower grades both approaches provide comparable results.  相似文献   
35.
This paper deals with the problem of time-varying point loads applied onto the surface of an elastic half-space and the stresses that such loads elicit within that medium. The emphasis is on the evaluation of the isobaric contours for all six of the stress components at various frequencies of engineering interest and for a full range of Poisson’s ratios. The extensive set of pressure bulbs presented herein may be of help in predicting the severity of dynamic effects in common practical situations in engineering—or even the lack thereof.  相似文献   
36.
To deal with earthquake-induced torsion in buildings due to some uncertain factors, difficult to account for directly in design, modern codes have introduced the so-called accidental design eccentricity (ADE). This provision has been based primarily on elastic investigations with special classes of multi-story buildings or with simplified, one-story inelastic models. In the present paper, the effectiveness of this provision is investigated using inelastic models, both of the typical one-story, 3-DOF type, and the more sophisticated MDOF, frame idealizations of the plastic hinge type. One, three and five story, realistic, frame buildings with different natural eccentricities were designed for different ADEs, including those specified by the EC8 and IBC codes. The evaluation is made using mean peak ductility factors of the edge frames as measures of their inelastic response, obtained from dynamic analyses for ten pairs of semi-artificial earthquake motions. The simplified models indicate that the accidental design eccentricity is very effective in reducing ductility demands, especially for very stiff systems. However, this is not confirmed by the more accurate and detailed plastic hinge building models, which show that designs accounting for accidental eccentricity do not exhibit any substantial reduction or better distribution of ductility demands, compared to designs in which accidental eccentricity has been entirely ignored. These findings suggest that the ADE provisions in codes, especially the more complicated ones as in the IBC, should be re-examined, by weighting their importance against the additional computational work they impose on designers. In the cases examined herein this importance can be characterized as marginal. Obviously additional studies are required, to include more building types and earthquake motions, in order to arrive at firm conclusions and recommendations for code modifications.  相似文献   
37.
Conventional numerical predictions of deep excavations normally neglect the construction process of the retaining structure and choose the earth pressure at rest as initial condition at the beginning of the simulation. The presented results of simulation and measurements during the construction process of the Taipei National Enterprise Center show, that such an assumption leads to an underestimation of the horizontal wall deflection, the surface ground settlements as well as the loading of the struts in case of normally to slightly over‐consolidated clayey soil deposits. The stepwise installation process of the individual diaphragm wall panels results in a substantial modification of the lateral effective stresses in the adjacent ground. Especially the pouring process of the panel and the fresh concrete pressure causes a partial mobilization of the passive earth pressure and a distinct stress level increase in the upper half of the wall. As a consequence of the increased stresses prior to the pit excavation, up to 15% greater ground and wall movements are predicted. Moreover, the increased stress level due to the installation process of the diaphragm wall leads to substantial higher strut loadings during the excavation of the pit. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
38.
A mechanism for fracture generation and for triggering land subsidence is presented. Infiltration through a pre-existing fracture zone into a two-layered system, as well as the deformation of unconsolidated sediments on the land surface, was numerically investigated. The numerical simulation of infiltration is based on a two-phase flow-model concept for porous media, and for the deformation, it is based on a Mohr-Coulomb model concept. Different studies with variations of the fracture parameter and infiltration conditions have been carried out. The infiltration results show that fast infiltration in a partially saturated aquifer leads to land subsidence, extension of pre-existing fractured zones and the generation of new cracks. If the water column is only on the fracture, the clay layer acts like a barrier and inhibits the infiltration through the fracture. If the water column covers the entire surface, the barrier effect is overcome; the infiltration intensity depends on the height of the water column, the fracture permeability and the fracture width. The deformation results show that a strong rainfall event of 2 h leads to deformations that are about 30 % of the vertical and 70 % of the horizontal annual land-subsidence rates.  相似文献   
39.
The low-grade base metal sulphide Cu–Zn–Pb and Fe mineralization of Qandil Series develop in shear zones that occur in formations of the north-western part of the Zagros Orogen. This sulphide mineralization occurs either as quartz vein type or disseminated type associated with metamorphic rocks (marbles and phyllites). This study aims to characterize these sulphide-rich ores by means of their mineralogical and geochemical features, including also the features of the corresponded host formations and those of marbles (calcitic and dolomitic) and phyllites. Petrographical data indicate the presence of Cu, Zn, Pb and Fe sulphides in hydrothermal quartz (±calcite) veins of different generations. Geochemical data of surface samples indicate enrichment of Cu and Fe in shear zones with low concentrations in Zn and Pb. The REE data indicate that the genesis of these sulphide ores took place in a hydrothermal system and was generally attributed to high temperature (> 250 °C).The mineralization seems to be fault-controlled, which is favoured by the significant tectonic deformation of the area.  相似文献   
40.
—?We apply an algorithm based on the modal summation method to theoretically estimate the site effect at selected locations underlain by different geological formations within the city of Thessaloniki (Greece). Complete strong motion synthetics are constructed for all components of motion at each site, for a maximum frequency of 10?Hz. The anelastic, local 1-D velocity models are based on cross-hole data. Four point sources with different azimuths and distances from the city are used to compute the input signals. The theoretical amplification is estimated through spectral ratios of accelerograms obtained by the local 1-D over those obtained by the regional 1-D velocity model. The results from the numerical modeling are compared with those derived from experimental techniques, such as of Standard Spectral Ratio and Horizontal-to-Vertical Spectral Ratio, which had been applied to acceleration data recorded at the same sites. The comparison demonstrates that the theoretical amplifications based on known and simple subsurface geology can be used as a first-order estimate, while for cases of more complex geometries the use of at least 2-D modeling in site effects estimation is mandatory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号