首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
大气科学   1篇
地球物理   7篇
地质学   14篇
海洋学   31篇
天文学   24篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   3篇
  1960年   1篇
排序方式: 共有83条查询结果,搜索用时 250 毫秒
11.
We analyzed Rb-Sr-Nd isotope ratios of mineral dust in total aerosol load collected with rainwater continuously from 1998 to 2006 at the summit of Mt. Sefuri, northern Kyushu, southwestern Japan. During this period, the total mass of the dust generally increased in late winter, peaked in early spring, and then decreased.87Sr/86Sr in atmospheric mineral dust varied from 0.7096 to 0.7180, and εNd(0)CHUR from −19.9 to −3.5. During heavy deposition periods, the dust had high 87Sr/86Sr isotope ratios and low to middle εNd(0)CHUR values, respectively. These compositions are comparable to those of sand and loess in arid areas of Northeast China, Takla Makan and Western Beijing. Such particles were transported by westerlies from those areas to northern Kyushu in winter and spring. In summer and autumn, the isotopic compositions of the dust varied greatly; however, during light deposition periods, the Sr isotope composition was low. In these seasons, the contributions to the dust from Japanese soils and volcanic ash, transported by southern winds, were relatively larger than in winter and spring because of decreased mineral dust particle transport from the continent. Nevertheless, fine sandy desert particles and loess in general accounted for most mineral dust deposition in northern Kyushu year-round, even in summer. Local soils derived from weathered granite and volcanic ash were minor components only.The net mass of water-insoluble inorganic matter in the collected mineral dust fluctuated from year-to-year; deposition on Mt. Sefuri was relatively large before 2001, decreased from 2002 to 2005, and increased greatly in spring 2006. These year-to-year differences probably reflected changes in the strength of the westerlies and in climate conditions in the arid source areas.  相似文献   
12.
The Manila clam, Ruditapes philippinarum, has maintained small‐sized populations in a semi‐enclosed brackish lake along the Sea of Japan, the Honjo area of Lake Nakaumi, although the environment and biota of this area have changed dramatically due to a large‐scale reclamation project. There should be underlying processes that enable the restoration of this species from small‐sized populations, such as the existence of source (i.e. reproductive) populations in other areas and depth zones of the lake. However, there has been no robust, properly designed evaluation of the distribution of the Manila clam in the subtidal sand flats. In order to elucidate the possible mechanisms that allow for the persistence of populations of the Manila clam, we examined the spatiotemporal and vertical variation in distributions of 0‐age clams in the subtidal zone of sand flats. Seasonal effects on population variations showed erratic changes among depth zones without a decreasing trend along the depth gradient. Further, many local populations became extinct even in the shallower zones due to seasonal (summer) hypoxia at deeper zones and hypoxia by the accumulation of key benthic species (Asian mussel and decaying macroalgae) in mats at shallower zones. A few surviving local populations were stable with a spatial‐fragmental (patchy) distribution, associated with fragmented accumulations of Asian mussels and macroalgae. Efforts to maintain stable populations and to restore this species in the subtidal area may depend on these small, restricted, patchy local populations. These findings suggest that high fertility and productivity of the Manila clam as well as patchy distribution of small populations may contribute to the maintenance of the population and the avoidance of extinction (by spatially diffusing the risk of extinction) in harsh environments resulting from the reclamation project.  相似文献   
13.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   
14.
In the automated(computerized) meridian circle, the graduation error can be calibrated in a short time: a complete determination of the graduation error takes a few days, while a coarse measurement of the first ten dominant Fourier components of the graduation error takes only 15 min. Thus, we can monitor the annual and diurnal variations of the graduation. In our regular observations, the annual variation can be thus corrected for. This kind of correction seems to be necessary, judging from the observing accuracy of modern meridian observations. On the other hand, we could not detect a change of the graduation within one clear day as far as the dominant components of the diameter error are concerned. In our case we can therefore assume the graduation error to be constant within one day.  相似文献   
15.
Europa's surface exhibits numerous small dome-like and lobate features, some of which have been attributed to fluid emplacement of ice or slush on the surface. We perform numerical simulations of non-Newtonian flows to assess the physical conditions required for these features to result from viscous flows. Our simulations indicate that the morphology of an ice flow on Europa will be, at least partially, influenced by pre-existing topography unless the thickness of the flow exceeds that of the underlying topography by at least an order of magnitude. Three classes of features can be identified on Europa. First, some (possibly most) putative flow-like features exhibit no influence from the pre-existing topography such as ridges, although their thicknesses are generally on the same order as those of ridges. Therefore, flow processes probably cannot explain the formation of these features. Second, some observed features show modest influence from the underlying topography. These might be explained by ice flows with wide ranges of parameters (ice temperatures >230 K, effusion rates >107 m3 year−1, and a wide range of grain sizes), although surface uplift (e.g., by diapirism) and in situ disaggregation provide an equally compelling explanation. Third, several observed features are completely confined by pre-existing topographic structures on at least one side; these are the best known candidates for flow features on Europa. If these features resulted from solid-ice flows, then temperatures >260 K and grain sizes <2 μm are required. Such small grain sizes seem unlikely; low-viscosity flows such as ice slurries or brines provide a better explanation for these features. Our results provide theoretical support for the view that many of Europa's lobate features have not resulted from solid-ice flows.  相似文献   
16.
We determined the morphologies and dimensions of possible impact craters on the surface of Asteroid 25143 Itokawa from images taken by the Hayabusa spacecraft. Circular depressions, circular features with flat floors or convex floors, and circular features with smooth surfaces were identified as possible craters. The survey identified 38 candidates with widely varying morphologies including rough, smooth and saddle-shaped floors, a lack of raised rims and fresh material exposures. The average depth/diameter ratio was 0.08±0.03: these craters are very shallow relative to craters observed on other asteroids. These shallow craters are a result of (1) target curvature influencing the cratering process, (2) raised rim not being generated by this process, and (3) fines infilling the craters. As many of the crater candidates have an unusual appearance, we used a classification scheme that reflects the likelihood of an observed candidate's formation by a hypervelocity impact. We considered a variety of alternative interpretations while developing this scheme, including inherited features from a proto-Itokawa, spall scars created by the disruption of the proto-Itokawa, spall scars following the formation of a large crater on Itokawa itself, and apparent depressions due to random arrangements of boulders. The size-frequency distribution of the crater candidates was close to the empirical saturation line at the largest diameter, and then decline with decreasing diameter.  相似文献   
17.
The Japan Sea Intermediate Water; Its Characteristics and Circulation   总被引:6,自引:0,他引:6  
In the southern Japan Sea there is a salinity minimum layer between the Tsushima Current Water and the Japan Sea Proper Water. Since the salinity minimum corresponds to the North Pacific Intermediate Water, it is named the Japan Sea Intermediate Water (JIW). To examine the source and circulation of JIW, the basin-wide salinity minimum distribution was investigated on the basis of hydrographic data obtained in 1969. The young JIW, showing the highest oxygen concentration and the lowest salinity, is seen in the southwestern Japan Sea west of 133°E, while another JIW with lower oxygen and higher salinity occupies the southeastern Japan Sea south of the subpolar front. Since the young JIW shows high oxygen concentrations, high temperatures and low densities, the source of the water is probably in the surface layer. It is inferred that the most probable region of subduction is the subarctic front west of 132°E with the highest oxygen and the lowest salinity at shallow salinity minimum. In addition, property distributions suggest that JIW takes two flow paths: a eastward flow along the subarctic front and an southward flow toward the Ulleung Basin. On the other hand, a different salinity minimum from JIW occupies the northern Japan Sea north of the subarctic front, which shows an apparently higher salinity and high oxygen concentration than JIW. However, this salinity minimum is considered not to be a water mass but to be a boundary between overlying and underlying water masses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
18.
It is well known that the cross polar cap potential is saturated under a strong interplanetary electric field and is often said to be related to the ionospheric currents. To investigate the other factors influencing this phenomenon, a global magnetohydrodynamics simulation not including the feedback from the ionosphere to the magnetosphere was conducted. The simulation results showed that an increase in the southward IMF causes a smaller increase in the cross polar cap potential than that caused by an increase in the solar wind velocity. This difference was caused by the transportation of reconnected magnetic field lines towards the tail.  相似文献   
19.
This research assesses the severity of future water scarcity and its impact on the growth of human civilization through system dynamics modeling of the world at regional level. Six sectors of activities are modeled in each continent to represent the human society. Continental interactions such as migration and trade are also modeled to express the synergy of activities among the various continents. Results of the model simulations from 1960 to 2100 show that water scarcity, unlike other limitations such as nonrenewable resources and persistent pollution, gives severe, detrimental problems within short delays after its occurrence.  相似文献   
20.
Hydrographic observations have revealed detailed structure of the Bottom Water in the Japan Sea. The Yamato Basin Bottom Water (YBBW) exhibits higher temperatures and lower dissolved oxygen concentrations than those found in the Japan Basin Bottom Water (JBBW). Both Bottom Waters meet around the boundary region between the Yamato and the Japan Basins, forming a clear benthic front. The structure of the benthic front suggests an estuary-like water exchange between both Basins, with the inflow from the Japan Basin passing under the outflow from the Yamato Basin. It is inferred from the property distributions that the JBBW flowing into the Yamato Basin is entrained by the cyclonic circulation in the basin, and modified to become the YBBW. Vertical diffusion and thermal balance in the YBBW are examined using a box model. The results show that the effect of geothermal heating has about 70% of the magnitude of the vertical thermal diffusion and both terms cancel the advection term of the cold JBBW from the Japan Basin. The box model also estimates the turnover time and vertical diffusivity for the YBBW as 9.1 years and 3.4 × 10−3 m2s− 1, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号