首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
地球物理   8篇
地质学   13篇
海洋学   17篇
天文学   11篇
自然地理   3篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
11.
Eutrophication and associated occurrence of hypoxic condition could cause significant damage to marine ecosystems, resulting in considerable economic losses to fisheries and aquaculture and is a major source of stress that fish often have to contend with in order to survive. This problem is likely to be exacerbated in the coming years, since the wastewater treatment facilities is unlikely to catch up with increasing human activities. Moreover, large-scale reclamation projects in coastal areas have recently been increased, and these activities certainly have adverse impacts on water quality and fisheries resources. Coastal construction has a significant role in the development of hypoxic water by changing the current and mixing pattern of water. Changes in species composition and decreases in species richness and diversity have been well documented in hypoxic systems. Hypoxia could cause endocrine disruption in fish and eliminate populations of sensitive species. Shallow coastal areas are of great importance for the special nursery of fish and shellfish and land reclamation in these areas cause strong damage to fisheries. Although the tolerance of aquatic life to hypoxia is known, there is no information about the mortality of fish caused by hypoxia because fish can swim around it and no modeling study has yet been carried out. Criteria that influence the movement of fish are: amounts of food, water temperature and depth, dissolved oxygen concentration and nature of seabed. However, among these, water temperature and dissolved oxygen are the most crucial parameters that affect survival, movement and growth of fish. In this paper, a model of fish preference and mortality for environmental conditions was developed and applied to the Hakata Bay where hypoxic water occurs every summer. For the purpose of this study, a field survey of fish behavior under hypoxic water was conducted by releasing marbled sale (Pleuronectes yokohamae) in the inner bay. Moreover, a series of preference tests for DO, salinity and temperature in the laboratory were conducted in order to decide preference parameters of fish. Using the results of both field and laboratory studies, a sub-module of fish preference and mortality was coded within an integrated hydrothermal and eutrophication model (CHEM) to predict the behavior and mortality of marbled sale when hypoxia would occur in the bay. The model could reasonably simulate the behavior of the fish under hypoxia. An assessment of the impact of the ongoing land reclamation project of about 401 ha in the Wajiro tidal flat zones at the head of the bay on the fisheries resources was also conducted using the model. The results showed that the artificial land lowered the mortality rate of fish under hypoxic condition in the bay during the summer period.  相似文献   
12.
Near-liquidus phase relations in one-atmosphere dry and water-saturated high pressure conditions were experimentally determined on products of three historic andesitic eruptions. Run conditions ranged from 900 to 1100°C, at pressures up to 1500 bars with fO2 controlled close to the nickel-nickel oxide (NNO) buffer. In order to represent the compositions of the true liquid parts of the erupting magmas, groundmass portions were mechanically separated from the porphyritic andesites. Such groundmass materials should lie exactly on the liquidus field boundary between the phases precipitating from the magma just prior to eruption under the prevailing P-T condition.All the samples showed a crossing of the plagioclase and orthopyroxene liquidi in the pressure-temperature range from 1 to 800 bar and 950–1090°C. The crossing condition approximates the magmatic condition immediately prior to eruption. In the case of the 1970 eruption of Akita-komagatake, the crossing point is at 150 bar and 1090°C, matching closely the observed explosive gas pressure and the temperature. In both cases of the 1783 eruption of Asama and the 1914–1915 eruption of Sakurajima volcanoes, the crossing point shift from higher water pressure and lower temperature for the earlier erupting magmas to lower pressure and higher temperature for the later magmas. This regularity may be explained by a vertical gradient of the temperature and water content within the magma column prior to eruption.  相似文献   
13.
Abstract— Micrometeorites have been significantly altered or melted by heating, which has been mainly ascribed to aerodynamic drag during atmospheric entry. However, if a major fraction of micrometeorites are produced by impacts on porous asteroids, they may have experienced shock heating before contact with the Earth's atmosphere (Tomeoka et al. 2003). A transmission electron microscope (TEM) study of the matrix of Murchison CM chondrite experimentally shocked at pressures of 10–49 GPa shows that its mineralogy and texture change dramatically, mainly due to shock heating, with the progressive shock pressures. Tochilinite is completely decomposed to an amorphous material at 10 GPa. Fe‐Mg serpentine is partially decomposed and decreases in amount with increasing pressure from 10 to 30 GPa and is completely decomposed at 36 GPa. At 49 GPa, the matrix is extensively melted and consists mostly of aggregates of equigranular grains of Fe‐rich olivine and less abundant low‐Ca pyroxene embedded in Si‐rich glass. The mineralogy and texture of the shocked samples are similar to those of some types of micrometeorites. In particular, the samples shocked at 10 and 21 GPa are similar to the phyllosilicate (serpentine)‐rich micrometeorites, and the sample shocked at 49 GPa is similar to the olivine‐rich micrometeorites. The shock heating effects also resemble the effects of pulse‐heating experiments on the CI and CM chondrite matrices that were conducted to simulate atmospheric entry heating. We suggest that micrometeorites derived from porous asteroids are likely to go through both shock and atmospheric‐entry heating processes.  相似文献   
14.
The recent development of structure‐from‐motion (SfM) and multi‐view stereo (MVS) photogrammetry techniques has enabled semi‐automatic high‐resolution bathymetry using aerial images taken by consumer‐grade digital cameras mounted on unmanned aerial vehicles (UAVs). However, the applicability of these techniques is sometimes limited by sun and sky reflections at the water surface, which render the point‐cloud density and accuracy insufficient. In this research, we present a new imaging technique to suppress the effect of these water‐surface reflections. In this technique, we order a drone to take a short video instead of a still picture at each waypoint. We then apply a temporal minimum filter to the video. This filter extracts the smallest RGB values in all the video frames for each pixel, and composes an image with greatly reduced reflection effects. To assess the performance of this technique, we applied it at three small shallow‐water sites. Specifically, we evaluated the effect of the technique on the point cloud density and the accuracy and precision of the photogrammetry. The results showed that the proposed technique achieved a far denser point cloud than the case in which a randomly chosen frame was used for each waypoint, and also showed better overall accuracy and precision in estimating water‐bottom elevation. The effectiveness of this new technique should depend on the surface wave state and sky radiance distribution, and this dependence, as well as the applicability to large areas, should be investigated in future research. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
15.
Shock-recovery experiments on mixtures of olivine and water with gas (air) were performed in a previous study to demonstrate water-mineral interactions during impact events (Furukawa et al., 2007). The products of these former experiments were investigated in the present study using transmission electron microscopy, scanning electron microscopy, and X-ray powder diffraction with the aim of finding evidence of aqueous alteration. Serpentine formed on the surface of shocked olivine with well-developed mosaicism. The yield of serpentine depended on the water/olivine ratio in the starting material, indicating progressive serpentinization under water-rich conditions. Comminution and mosaicism were developed in shocked olivine grains. The temperature and pressure changes of the samples during the experiments were estimated by constructing Hugoniots for mixtures of olivine and water, combined with the results of an additional fracturing experiment on a shocked container. Pressures and temperatures reached 4.6-7.2 GPa and at least 230-390 °C, respectively, for 0.7 μs during in-shock compression. Post-shock temperatures reached a maximum of ∼1300 °C, when the shock wave reached the gas in the sample cavity. The serpentine formed after the post-shock temperature maximum, most likely when temperatures dropped to between 200 and 400 °C. This is the first experiment to demonstrate the formation of phyllosilicates using heat supplied by an impact. The present results and estimations suggest that phyllosilicates could form as a result of impacts into oceans as well as by impacts on terrestrial and Martian crustal rocks, and on some asteroidal surfaces, where liquid or solid H2O is available. A significant amount of phyllosilicates would have formed during the late heavy bombardment of meteorites on the Hadean Earth, and such phyllosilicates might have affected the prebiotic carbon cycle.  相似文献   
16.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   
17.
Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato-790729. Under CL microscopy, bright blue emission was observed in Na-lingunite in the shock veins. Dull blue-emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na-lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K-lingunite and experimentally shock-recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K-lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock-recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure-induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar-bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.  相似文献   
18.
19.
Abstract

The effect of the El Niño Southern Oscillation (ENSO) on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia, is demonstrated. This research used rainfall data collected between 1978 and 2008. The results suggest a relationship between ENSO events and the trend in rainfall observed in the study area. Further analyses show that El Niño events have a stronger effect on the rainfall compared to La Niña events. El Niño events were also correlated to the increase in the number of days with less than 1 mm of rainfall in the dry season. The analysis reveals that the impact of El Niño events on rainfall in dry seasons is intensifying annually. Furthermore, ENSO events are not the only factors affecting rainfall trends in the observed area. Other factors, such as deforestation, may also affect the trend.

Editor Z.W. Kundzewicz

Citation Susilo, G.E., Yamamoto, K., Imai, T., Ishii, Y., Fukami, H., and Sekine, M., 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrological Sciences Journal, 58 (3), 539–548.  相似文献   
20.
Multispectral satellite remote sensing can predict shallow-water depth distribution inexpensively and exhaustively, but it requires many in situ measurements for calibration. To extend its feasibility, we improved a recently developed technique, for the first time, to obtain a generalized predictor of depth. We used six WorldView-2 images and obtained a predictor that yielded a 0.648 m root-mean-square error against a dataset with a 5.544 m standard deviation of depth. The predictor can be used with as few as two pixels with known depth per image, or with no depth data, if only relative depth is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号