首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   4篇
  国内免费   11篇
大气科学   4篇
地球物理   31篇
地质学   68篇
海洋学   17篇
天文学   8篇
综合类   2篇
自然地理   5篇
  2021年   3篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   2篇
  2011年   9篇
  2010年   10篇
  2009年   2篇
  2008年   14篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有135条查询结果,搜索用时 265 毫秒
61.
Abstract— Phosphates in martian meteorites are important carriers of trace elements, although, they are volumetrically minor minerals. PO4 also has potential as a biomarker for life on Mars. Here, we report measurements of the U‐Th‐Pb systematics of phosphates in the martian meteorite ALH 84001 using the Sensitive High Resolution Ion MicroProbe (SHRIMP) installed at Hiroshima University, Japan. Eleven analyses of whitlockites and 1 analysis of apatite resulted in a total Pb/U isochron age of 4018 ± 81 Ma in the 238U/206Pb‐207Pb/206Pb‐204Pb/206 Pb 3‐D space, and a 232Th‐208Pb age of 3971 ± 860 Ma. These ages are consistent within a 95% confidence limit. This result is in agreement with the previously published Ar‐Ar shock age of 4.0 ± 0.1 Ga from maskelynite and other results of 3.8–4.3 Ga but are significantly different from the Sm‐Nd age of 4.50 ± 0.13 Ga based on the whole rock and pyroxene. Taking into account recent studies on textural and chemical evidence of phosphate, our result suggests that the shock metamorphic event defines the phosphate formation age of 4018 ± 81 Ma, and that since then, ALH 84001 has not experienced a long duration thermal metamorphism, which would reset the U‐Pb system in phosphates.  相似文献   
62.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   
63.
Recently, energy service providers (ESP) have increased due to deregulation in the power market. They install energy supply equipment at their own cost and supply the necessary energy to the client. The Tokyo Metropolitan Government started Asia’s first cap-and-trade program in April 2010. This program caps energy-related carbon dioxide emissions from some 1,330 offices and factories in Tokyo. Then, ESPs have to manage the many risks of energy service project directly linked to the profits. In this paper, we describes the risk analysis and investment optimization for energy service projects using financial engineering.  相似文献   
64.
The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165–193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143–165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl and HCO3 remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl concentration, similar to that of pore water sampled immediately above (135–142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3 /Cl ratio of 305 differed markedly from downcore pore water HCO3 /Cl ratios of 63–99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of ?126 to ?133‰ and δ18O of ?15.7 to ?16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of ?123‰, δ18O of ?15.6‰) and of lake bottom water (δD of ?121‰, δ18O of ?15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore waters of core St6GC4 and also of the neighboring cores GC2 and GC3 from the Kukuy K-9 MV show neither isotopic nor ionic evidence of such a source (e.g., elevated sulfate concentration). These findings constrain GH formation to earlier times, but a deep-rooted source of hydrate-forming water remains ambiguous. A possible long-term dampening of key deep-water source signatures deserves further attention, notably in terms of diffusion and/or advection, as well as anaerobic oxidation of methane.  相似文献   
65.
Coupled hillslope and channel processes in headwater streams (HWS) lead to rapid changes in channel dimensions. Changes in channel size and shape caused by a debris flow event along the length of a headwater stream in the Ashio Mountains, Japan, were captured with the aid of repeat high-definition surveys using terrestrial laser scanning (TLS) techniques. The HWS was classified into three distinct reaches below the debris flow initiation zone. A large knickpoint separated an upper bedrock reach from a colluvial reach along the midsection of the drainage. The colluvial reach transitioned to a lower bedrock reach that terminated at the master stream. Cross-sectional and morphometric analyses revealed no statistically significant changes in channel size or shape along the upper bedrock reach. Debris flow erosion generated significant differences in channel size and shape along a colluvial reach. Sediment bulking associated with erosion along the colluvial reach led to increases in channel size along the lower bedrock reach, but no statistical differences in channel shape. Morphometric analyses from the TLS point cloud revealed that debris flow erosion produced a distinct nonlinear change in channel dimensions in the downstream direction within the HWS. Variations in channel substrate along the length of HWS contributed directly to this nonlinear response. The episodic nature and nonlinearity of erosion associated with the current debris flow event highlights the importance of debris flows in general in understanding the transport of sediment, coarse to fine particulate organic material, and large woody debris, which are critical to the long-term management of riverine environments. TLS sampling methods show promise as one component of a multianalytical approach needed to continuously monitor and manage the dynamics of HWS.  相似文献   
66.
We produced a four-dimensional variational ocean re-analysis for the Western North Pacific over 30 years (FORA-WNP30). It is the first-ever dataset covering the western North Pacific over 3 decades at eddy-resolving resolution. The four-dimensional variational analysis scheme version of the Meteorological Research Institute Multivariate Ocean Variational Estimation system (MOVE-4DVAR) is employed to conduct a long-term reanalysis experiment during 1982–2012. After evaluating the basic performance of FORA-WNP30, the interannual to decadal variability is analyzed. Overall, FORA-WNP30 reproduces basic features in the western North Pacific well. One of outstanding features in FORA-WNP30 is that anomalous events such as the Kuroshio large meander and anomalous intrusion of the Oyashio in the 1980s, when there were no altimeter data, are successfully reproduced. FORA-WNP30 is therefore a valuable dataset for a variety of oceanographic research topics and potentially for related fields such as climate study, meteorology and fisheries.  相似文献   
67.
Combined determination of Cr and Ti isotopes of planetary materials offers a means with which to investigate their genetic relationship and the evolution of the protoplanetary disk. Here, we report the new sequential chemical separation procedure for combined Cr and Ti isotope ratio measurements. It comprises three steps: (a) Fe removal using AG1‐X8 anion exchange resin, (b) Ti separation using TODGA resin and (c) Cr separation using AG50W‐X8 cation exchange resin (with one additional step of Ti purification using AG1‐X8 anion exchange resin for samples having high Cr/Ti and Ca/Ti ratios). We applied the proposed procedure to terrestrial and meteorite samples with various compositions. Typical recovery rates of 90–100% were achieved with total procedural Cr and Ti blanks of 3–5 and 2–3 ng, respectively. We measured the Cr and Ti isotope compositions of the separated samples using thermal ionisation mass spectrometry and multiple collector‐inductively coupled plasma‐mass spectrometry, respectively. Our Cr and Ti isotope data were found to be consistent with those of previous studies of individual Cr and Ti isotopic compositions of the meteorites. These results demonstrate the capability of our separation method when applied to combined high‐precision Cr and Ti isotope analyses for single digests of planetary materials.  相似文献   
68.
ALHA 76005 is a basaltic achondrite containing few. if any, orthopyroxenes. Its bulk major and trace element composition is like that of a non-cumulate eucrite, and unlike that of a howardite. It contains a variety of igneous clasts which differ in their textures, pyroxene/plagioclase ratios and pyroxene and plagioclase compositions. One clast, No. 4, was found to have the REE pattern of a cumulate eucrite and an oxygen isotopic composition different from that of the bulk meteorite. Both the chemical and oxygen isotopic composition of clast No. 4 suggest that it was derived from a source different from its host. These observations lead to the conclusion that ALHA 76005 is a polymict eucrite.  相似文献   
69.
In situ X-ray diffraction measurements on a calcium aluminosilicate (CAS) phase have been carried out using a laser-heated diamond anvil cell up to a pressure of 44 GPa, employing a synchrotron radiation source. CAS is the major mineral formed from sediments subducted into the Earth's mantle. The sample was heated using a YAG laser after each pressure increment to relax the deviatoric stress in the sample. X-ray diffraction measurements were carried out at T = 300 K using an angle-dispersive technique. The pressure was calculated using an internal platinum metal pressure calibrant. The Birch–Murnaghan equation of state for the CAS phase obtained from the experimental unit cell parameters showed a density of ρ0 = 3.888 g/cm3 and a bulk modulus of K0 = 229 ± 9 GPa for K0 = 4.7 ± 0.7. When the first pressure derivative of the bulk modulus was fixed at K0 = 4, then the value of K0 = 239 ± 2 GPa. From the experimental compressibility, the density of the CAS phase was observed to be lower than the density of co-existing Al-bearing stishovite, calcium perovskite, calcium ferrite-type phases, and (Fe,Al)-bearing Mg-perovskite in subducted sediments in the lower mantle. Therefore, the density of subducted sediments in the lower mantle decreases with increasing mineral proportion of the CAS phase.  相似文献   
70.
The magnitude of the world's mineral consumption has increased sharply, and there is no sign that growth is likely to stop in the near future. Currently, new discoveries and technology add to the reserves of varous mineral commodities at a rate that has exceeded depletion. As a result, life expectancies have remained nearly constant. However, it is questionable whether this condition is sustainable in the future. Therefore, most of our attention to the future has been focused on potentially recoverable resources. The potentially recoverable resources for 35 minerals in the Earth's crust were estimated based on the relationship between crustal abundance and the reserve of currently recoverable gold. The ratio of the reserve plus cumulative consumption to the abundance of gold is appropriate for calculating reserves of other mineral resources because gold has the highest profit margin for exploration of reserves. From an economic perspective, the price of gold is 350 times the mean value of 33 other resources for calculating production versus price. New mining technologies and new processing methods have been developed during the last 20 years as a response to high prices. As a result, five times the reserves available in 1970 have now been discovered, and two times the reserves available in 1970 were consumed during the past two decades. It is questionable whether other mineral commodities can reach the ratio of reserve plus cumulative consumption to abundance that gold does. Using this concept, the limit of the Earth's resources under present technology was calculated for 35 mineral resources, based on the ratio of the reserve plus cumulative consumption to abundance for gold. Even though recoverable tonnage of lead, silver, tin, boron, copper, and mercury from ore deposits in the Earth's crust is relatively low, the abundance of these metals is apparently sufficient for future supplies. However, considering the special situation of gold created by its very high price compared to world production, there is anxiety concerning steep increases in the price or depletion of these metals, which have a shorter lifetime from a geochemical point of view.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号