首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   6篇
  国内免费   1篇
测绘学   2篇
大气科学   9篇
地球物理   56篇
地质学   90篇
海洋学   7篇
天文学   13篇
综合类   7篇
自然地理   6篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   14篇
  2008年   11篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   2篇
  1990年   3篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1970年   3篇
  1969年   4篇
  1962年   2篇
  1961年   3篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有190条查询结果,搜索用时 78 毫秒
21.
The freshwater musselDreissena polymorpha Pallas was sighted for the first time in Lake Zürich about 1969. This meant a real problem for the water treatment of lake water. By means of a pump and vertical net hauls it was tried to add more information to the scarce results on Lake Zürich. Additional dates about temperature, depth of Secchi disk visibility and beam transmittance were collected. There was a first appearance of the larvae ofD. polymorpha at the beginning of June. Following the mean temperature of the epilimnion the number of individuals/m2 reached max. 210,000. The greatest concentration measured in 1974 of larvae/m3 was 54,375 at a depth of 4 m. The last appearance ofD. polymorpha was observed at the end of October.
  相似文献   
22.
Gersdorffite from two mineralization types (post-Variscan vein deposits, strata-bound mineralization) was investigated in the Niederberg area Rhenish Massif. In the ternary Ni–Co–Fe space gersdorffite from post-Variscan vein deposits displays a tight cluster with the highest Ni-contents ranging from 0.825 to 0.962 atoms per formula unit (a.p.f.u.). As/S ratios comprise a narrow range from 0.875 to 1.012. In contrast gersdorffite from the strata-bound mineralization displays a substitutional trend. Co and Fe substitute for Ni in a ± fixed ratio. Ni ranges between 0.494 and 0.836 a.p.f.u. As/S ratios (1.025–1.211) display a wider range and indicate higher As-contents relative to gersdorffite from post-Variscan vein deposits. Based on these results, two different hydrothermal fluid systems can be identified in the Niederberg area forming gersdorffite in both mineralization types. The hydrothermal fluids circulating in the post-Variscan vein deposits were homogeneous (high Ni-activities, lower As fugacities) and mixing occurred far away from the site of deposition whereas the fluids of the strata-bound mineralization were more heterogeneous (decreasing Ni-activities) with moderate elevated As fugacities. With respect to the post-Variscan vein deposits in the Niederberg area the results are compatible with earlier findings.Comparison with available gersdorffite analyses from adjacent areas (borehole Viersen, Ramsbeck deposit) reveal that gersdorffite compositions provide a reliable tool in distinguishing between different hydrothermal systems on a regional scale in the northern Rhenish Massif. However, gersdorffite compositions cannot be used to discriminate between Variscan and post-Variscan deposits with confidence.The country rocks in the Niederberg area are possible sources for Ni, Co and Fe during gersdorffite formation of the strata-bound mineralization. However, due to the remarkable homogeneity of gersdorffite compositions of the post-Variscan vein deposits irrespective of age and composition of the immediate adjacent host-rocks it is assumed that these host-rocks are not the source of the metals. Reduced Zechstein sulfate is assumed to be the source of sulfur. The As source remains unknown.Due to conflicting experimental data concerning the gersdorffite solid solution field it is not possible to derive reliable formation temperatures for the strata-bound mineralization. However, gersdorffite compositions of the post-Variscan vein deposits are compatible with low formation temperatures (<300 °C) in accordance with earlier findings.  相似文献   
23.
We have analyzed nitrogen, neon and argon abundances and isotopic ratios in target material exposed in space for 27 months to solar wind (SW) irradiation during the Genesis mission. SW ions were extracted by sequential UV (193 nm) laser ablation of gold-plated material, purified separately in a dedicated line, and analyzed by gas source static mass spectrometry. We analyzed gold-covered stainless steel pieces from the Concentrator, a device that concentrated SW ions by a factor of up to 50. Despite extensive terrestrial N contamination, we could identify a non-terrestrial, 15N-depleted nitrogen end-member that points to a 40% depletion of 15N in solar-wind N relative to inner planets and meteorites, and define a composition for the present-day Sun (15N/14N = [2.26 ± 0.67] × 10−3, 2σ), which is indistinguishable from that of Jupiter’s atmosphere. These results indicate that the isotopic composition of nitrogen in the outer convective zone of the Sun has not changed through time, and is representative of the protosolar nebula. Large 15N enrichments due to e.g., irradiation, low temperature isotopic exchange, or contributions from 15N-rich presolar components, are therefore required to account for inner planet values.  相似文献   
24.
Ultramafic rocks and gabbros are exposed in the southern Puna (NW Argentina) in tectonic association with continental arc-related Ordovician (volcano) sedimentary successions and granitoids. The origin of this mafic rock suite has been debated for three decades as either representing an Ordovician terrane suture, primitive Ordovician arc-related rocks or relics of the pre-Ordovician basement in tectonic contact with the Ordovician retro-arc basin successions. We present the first U–Pb ages of primary and inherited zircon from gabbros of this mafic–ultramafic assemblage. LA-ICP-MS analyses on cores and rims of these zircon grains yielded a concordia age of 543.4 ± 7.2 Ma for the gabbroic rocks. Other analysed zircons have Mesoproterozoic, and Early Ediacaran core and rim ages indicating that the magmas also assimilated Meso- and Neoproterozoic crustal material prior to final crystallization. The mafic rocks witnessed higher metamorphic grade than associated Ordovician rocks, which are unmetamorphosed or only affected by anchimetamorphism. The gabbros are mostly tholeiitic and enriched in Zr, Th, as well as other incompatible elements and have εNd t=540Ma ranging from 1.3 to 7.4 with most of the values between 5 and 7. 147Sm/144Nd ratios show evidence of weak crustal contamination. The mafic rocks do not reveal any affinity to mid-ocean ridge basalts in their geochemistry but point instead to an emplacement in an active plate margin arc environment. Chromites from ultramafic rocks show typical Ti, Al, Cr#, Fe3+ abundances found in magmatic arc rocks. The formation of the gabbros and the associated ultramafic rocks in the southern Argentine Puna is related to the evolution of the margin of the Pampia terrane, including the Puncoviscana basin, during the Late Neoproterozoic and earliest Cambrian. In contrast to previous interpretations, the rocks predate the Ordovician evolution of the Central proto-Andean active margin. Consequently, interpretations assuming these rocks to represent an oceanic terrane suture of Ordovician age have to be dismissed as much as all palaeotectonic models that define Ordovician terranes in the Central Andes based on assumption that the ultramafic rocks and gabbros exposed in the southern Puna mark plate boundaries.  相似文献   
25.
Wang  Xuerui  Nackenhorst  Udo 《Acta Geotechnica》2022,17(10):4537-4553
Acta Geotechnica - A coupled bio-chemo-hydro-mechanical model (BCHM) is developed to investigate the permeability reduction and stiffness improvement in soil by microbially induced calcite...  相似文献   
26.
27.
28.
We report U–Pb single zircon ages from three pre-Variscan granitoids in the NE part of the Bohemian Massif. The Platerówka granodiorite from the Lausitz-Izera Unit, the Polish Sudetes, has been dated at 533±9 Ma. The Bitouchov granite form the SW part of the South Krkonoe Unit, the Czech Sudetes, gave an age of 540+11/–10 Ma, and the Wdroe granodiorite in the Fore-Sudetic Block yielded 548±9 Ma. All these latest Vendian/Early Cambrian granitoids represent the post-tectonic expression of a late Proterozoic Cadomian orogenic cycle and demonstrate the eastward extent of the Cadomian basement into the Variscan orogen. Granodiorites of similar age have so far been reported from Brittany and especially from the Saxo-Thuringian Terrane to the NE and SW of the Elbe Fault Zone. We conclude that the Saxo-Thuringian Terrane extends across the Elbe and Sudetic Marginal Fault Zones into the Fore-Sudetic Block.  相似文献   
29.
International Journal of Earth Sciences - In this study, we focus on structural configuration of the Entenschnabel area, a part of the German exclusive economic zone within the North Sea, by means...  相似文献   
30.
In 1989, the need for reliable gridded land surface precipitation data sets, in view of the large uncertainties in the assessment of the global energy and water cycle, has led to the establishment of the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst on invitation of the WMO. The GPCC has calculated a precipitation climatology for the global land areas for the target period 1951–2000 by objective analysis of climatological normals of about 67,200 rain gauge stations from its data base. GPCC's new precipitation climatology is compared to several other station-based precipitation climatologies as well as to precipitation climatologies derived from the GPCP V2.2 data set and from ECMWF's model reanalyses ERA-40 and ERA-Interim. Finally, how GPCC's best estimate for terrestrial mean precipitation derived from the precipitation climatology of 786 mm per year (equivalent to a water transport of 117,000 km3) is fitting into the global water cycle context is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号