首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   8篇
  国内免费   7篇
测绘学   2篇
大气科学   7篇
地球物理   47篇
地质学   54篇
海洋学   32篇
天文学   7篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2021年   1篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   12篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   8篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
71.
In order to determine ‘porosity‐free’ intrinsic ultrasonic compressional (Vp) and shear wave (Vs) velocities and Vp/Vs of an olivine gabbro from the Oman ophiolite, we developed a new experimental system using a piston‐cylinder type high‐pressure apparatus. The new system allowed us to measure velocities at pressures ranging from 0.20 to 1.00 GPa and at temperatures up to 300°C for Vp and 400°C for Vs. At room temperature, the Vp and Vp/Vs increase rapidly with pressure up to 0.40 GPa, while between 0.45 and 1.00 GPa the increase is more gradual. The change in increasing rate is attributed to closure of porosity at pressures above 0.45 GPa. Based on the linear regression of data obtained at higher pressures (0.45–1.00 GPa) and extrapolation to the lower pressures, combined with temperature derivatives of velocities of the sample measured at 1.00 GPa, we determined the intrinsic Vp and Vs of the sample as a function of pressure (P, in GPa) and temperature (T, in °C). The intrinsic velocities can be expressed as Vp (km/s) = 7.004 + 0.096 × P ? 0.00015 × T, and Vs (km/s) = 3.827 + 0.007 × P ? 0.00008 × T. We evaluated the intrinsic Vp and Vs of the olivine gabbro at oceanic crustal conditions and compared them with a velocity depth‐profile of the borehole seismic observatory WP‐2 area in the northwestern Pacific Basin. Although the intrinsic Vp (~7.0 km/s) and Vs (~3.8 km/s) for the olivine gabbro studied are comparable to those of seismic layer 3 in the WP‐2 area, the estimated vertical gradients of intrinsic velocities are significantly smaller than those reported from layer 3. These results suggest that velocity profiles of layer 3 in the WP‐2 area may reflect the presence of a minor porosity in lower oceanic crust, which closes with increasing depth and/or continuous changes in mineralogy of layer 3 rocks.  相似文献   
72.
Combined determination of Cr and Ti isotopes of planetary materials offers a means with which to investigate their genetic relationship and the evolution of the protoplanetary disk. Here, we report the new sequential chemical separation procedure for combined Cr and Ti isotope ratio measurements. It comprises three steps: (a) Fe removal using AG1‐X8 anion exchange resin, (b) Ti separation using TODGA resin and (c) Cr separation using AG50W‐X8 cation exchange resin (with one additional step of Ti purification using AG1‐X8 anion exchange resin for samples having high Cr/Ti and Ca/Ti ratios). We applied the proposed procedure to terrestrial and meteorite samples with various compositions. Typical recovery rates of 90–100% were achieved with total procedural Cr and Ti blanks of 3–5 and 2–3 ng, respectively. We measured the Cr and Ti isotope compositions of the separated samples using thermal ionisation mass spectrometry and multiple collector‐inductively coupled plasma‐mass spectrometry, respectively. Our Cr and Ti isotope data were found to be consistent with those of previous studies of individual Cr and Ti isotopic compositions of the meteorites. These results demonstrate the capability of our separation method when applied to combined high‐precision Cr and Ti isotope analyses for single digests of planetary materials.  相似文献   
73.
A high-magnesian andesite (SiO2 58.50%, MgO 9.47%) occurs at Teraga-Ike in southwest Japan. It belongs to the Setouchi volcanic rocks of middle Miocene age and carries olivine and bronzite as phenocrysts (4.2 and 1.4 modal percent, respectively). This andesite is characterized by Mg-values as high as 75, suggesting that it may be a primary andesite. Olivine phenocrysts (Fo87–91) are in equilibrium with the groundmass (= liquid) on the basis of Fe-Mg exchange partitioning between olivine and liquid, and they have high NiO contents (up to 0.45%). Chromite inclusions in olivine and rarely bronzite have high Cr2O3 contents (max. 54.87%). These features strongly suggest that the Teraga-Ike andesite keeps the chemical composition of the primary magma generated in the upper mantle, and therefore verify the existence of primary andesite magmas.  相似文献   
74.
226Ra,210Pb and210Po were measured in oceanic profiles at two stations near the Bonin and Kurile trenches.210Po is depleted by 50% on average relative to210Pb in the surface water. In the deep water,210Pb is about 25% deficient relative to226Ra. Based on the deficiency,210Pb residence time with respect to removal by particulate matter was estimated to be less than 96 years in the deep water.210Pb deficiency in the bottom water was significantly greater than that of the adjacent deep water, indicating more effective removal near or at the bottom interface.210Pb,210Po and Th appear to have similar overall rate constants of particulate removal throughout the water column.  相似文献   
75.
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-t  相似文献   
76.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   
77.
Oxygen-isotopic compositions in conjunction with petrologic investigation have been determined for a coarse-grained type B2 Ca, Al-rich inclusion (CAI) from the reduced CV3 Vigarano using secondary ion mass spectrometry. The oxygen-isotopic compositions of minerals are distributed along the carbonaceous chondrite anhydrous mineral line indicating mixing between 16O-rich and 16O-poor nebular components. The O-isotopic heterogeneities among and within minerals in the CAI interior indicate that CAI formation started in an 16O-rich nebula and subsequently continued in an 16O-poor nebula. 16O-rich signatures of melilite and fassaite in the Wark-Lovering rim and of olivine of the accretionary rim indicate that the nebular environment during formation of the CAI returned to an 16O-rich composition after processing in an 16O-poor nebula. These O-isotopic variations in the CAI support multiple heating events in the solar nebula and indicate that the nebular environments fluctuated from 16O-rich to 16O-poor and back to 16O-rich compositions during the formation of a single CAI.  相似文献   
78.
Concentrations of Re and Os, and the isotopic composition of Os have been measured in the Japan Sea sediments to assess the response of the Japan Sea to glacial–interglacial climate change and associated weathering fluxes. The osmium concentrations in the sediment samples analyzed vary from 59 to 371 pg/g, and 187Os/188Os from 0.935 to 1.042. Only 187Os/188Os of sediment samples from dark laminations deposited under suboxic to anoxic conditions and having elevated concentrations of Re and Os, and with ≥ 80% hydrogenous Os are explained in terms of seawater composition. Lower 187Os/188Os were observed for sediments deposited during the last glacial maximum (LGM) when planktonic foraminifera from the Japan Sea recorded lighter oxygen isotopic composition. Decrease in dissolved Os fluxes from continents and/or change in the composition of the dissolved load to the Japan Sea are suggested as the driving mechanisms for the observed lower LGM 187Os/188Os. The results of this study, coupled with lower 187Os/188Os during the last glacial observed at other sites from ocean basins with different lithology and contrasting sediment accumulation rates, suggest that this trend is characteristic of the global oceans.

Data from this study show that the Japan Sea recorded higher 187Os/188Os during the current interglacial coinciding with excursions of oxygen isotopic compositions of planktonic foraminifera to heavier values. This is explained in terms of preferential release of 187Os during deglacial weathering and/or higher continental Os flux driven by warm and wet climate. This study demonstrates that Os isotopic composition of reducing margin sediments has immense potential to track variations in the seawater composition. In addition, 187Os/188Os of reducing sediments may be used to draw inferences about local paleoceanographic processes in semi-enclosed basins such as the Japan Sea.  相似文献   

79.
The Japan Trench subduction zone, located east of NE Japan, has regional variation in seismicity. Many large earthquakes occurred in the northern part of Japan Trench, but few in the southern part. Off Miyagi region is in the middle of the Japan Trench, where the large earthquakes (M > 7) with thrust mechanisms have occurred at an interval of about 40 years in two parts: inner trench slope and near land. A seismic experiment using 36 ocean bottom seismographs (OBS) and a 12,000 cu. in. airgun array was conducted to determine a detailed, 2D velocity structure in the forearc region off Miyagi. The depth to the Moho is 21 km, at 115 km from the trench axis, and becomes progressively deeper landward. The P-wave velocity of the mantle wedge is 7.9–8.1 km/s, which is typical velocity for uppermost mantle without large serpentinization. The dip angle of oceanic crust is increased from 5–6° near the trench axis to 23° 150 km landward from the trench axis. The P-wave velocity of the oceanic uppermost mantle is as small as 7.7 km/s. This low-velocity oceanic mantle seems to be caused by not a lateral anisotropy but some subduction process. By comparison with the seismicity off Miyagi, the subduction zone can be divided into four parts: 1) Seaward of the trench axis, the seismicity is low and normal fault-type earthquakes occur associated with the destruction of oceanic lithosphere. 2) Beneath the deformed zone landward of the trench axis, the plate boundary is characterized as a stable sliding fault plain. In case of earthquakes, this zone may be tsunamigenic. 3) Below forearc crust where P-wave velocity is almost 6 km/s and larger: this zone is the seismogenic zone below inner trench slope, which is a plate boundary between the forearc and oceanic crusts. 4) Below mantle wedge: the rupture zones of thrust large earthquakes near land (e.g. 1978 off Miyagi earthquake) are located beneath the mantle wedge. The depth of the rupture zones is 30–50 km below sea level. From the comparison, the rupture zones of large earthquakes off Miyagi are limited in two parts: plate boundary between the forearc and oceanic crusts and below mantle wedge. This limitation is a rare case for subduction zone. Although the seismogenic process beneath the mantle wedge is not fully clarified, our observation suggests the two possibilities: earthquake generation at the plate boundary overridden by the mantle wedge without serpentinization or that in the subducting slab.  相似文献   
80.
In situ X-ray diffraction measurements on a calcium aluminosilicate (CAS) phase have been carried out using a laser-heated diamond anvil cell up to a pressure of 44 GPa, employing a synchrotron radiation source. CAS is the major mineral formed from sediments subducted into the Earth's mantle. The sample was heated using a YAG laser after each pressure increment to relax the deviatoric stress in the sample. X-ray diffraction measurements were carried out at T = 300 K using an angle-dispersive technique. The pressure was calculated using an internal platinum metal pressure calibrant. The Birch–Murnaghan equation of state for the CAS phase obtained from the experimental unit cell parameters showed a density of ρ0 = 3.888 g/cm3 and a bulk modulus of K0 = 229 ± 9 GPa for K0 = 4.7 ± 0.7. When the first pressure derivative of the bulk modulus was fixed at K0 = 4, then the value of K0 = 239 ± 2 GPa. From the experimental compressibility, the density of the CAS phase was observed to be lower than the density of co-existing Al-bearing stishovite, calcium perovskite, calcium ferrite-type phases, and (Fe,Al)-bearing Mg-perovskite in subducted sediments in the lower mantle. Therefore, the density of subducted sediments in the lower mantle decreases with increasing mineral proportion of the CAS phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号