首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   7篇
地球物理   1篇
地质学   2篇
海洋学   11篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  1996年   3篇
  1993年   1篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 759 毫秒
11.
为解决人口、资源、环境等人类面临的重大问题,海洋作为地球上尚未充分开发的重要疆域而备受重视。中国以海水养殖业为基础的“蓝色农业”在缓解人口增长对陆地农业的压力,促进沿海地区经济的发展中正发挥着重要作用。然而,近10年来,世界范围内海水微生物流行性和暴发性病害相继发生,严重制约了海水养殖业的健康发展(相建海,2003)。为了防治细菌性病害,大量的抗生素药类被应用于养殖过程的各个阶段,巨大的选择压力导致了海水养殖水域耐药细菌的种类和数量的显著增加,养殖生物耐药病原菌病害的发生也越来越频繁,微生物病害防治的难度越来越大。更严重的问题是这样培养的水产养殖品往往携带耐药细菌,通过食物链传递,将对人类健康和生命安全直接构成威胁(Sorum et al.,2002)。一些海产生物病原菌本身也是人类病原菌,如一些海洋弧菌(French et al.,1989;Wong et al.,2000),这些水陆两栖人畜共患病原菌耐药性的获得及这种病害的发生和流行将会给人类带来灾难性的后果。另外,由于大多耐药因子的可传播性,海水养殖环境中正常菌群的耐药性同样是一个不可忽视的严峻问题(Sorum et al.,2002)。大多数抗性决定子(耐药基因)是在可移动和传递的遗传载体,如质粒或接合转座子上,可在不同菌株甚至是不同种属细菌间相互传递(Ferber,1998;OBrien,2002)。再加上养殖水体的半封闭性(池养中的定期或不定期的换水)或全开放性(滩涂或近海的网箱或筏式养殖),耐药细菌有可能被潮汐和海流带入近岸的非养殖区及海滨旅游区,通过菌间遗传物质的传递,耐药基因有可能被传入环境中的人体病原菌,大大增加了人体耐药病原菌病害发生和流行的可能性及危害程度(Miranda et al.,2001;Thayumanavan et al.,2003)。大量抗生素的使用还改变了养殖海域及临近自然海区细菌群落的结构及种类和功能多样性,破坏了生态平衡和海洋正常的生命过程(Chelossi et al.,2003)。养殖水域作为可能的抗药因子的孳生地、储藏库和扩散源(Miranda et al.,2002;Rhodes et al.,2000),已引起了全球性的关注。世界上一些水产养殖国家相继开展了养殖水体耐药细菌的调查研究,并有一些国家已对养殖中抗生素的种类、使用方法、使用剂量、残存量及检测标准进行了行政化的规范和管理(李爱华,2002)。目前我国对海水养殖水体细菌耐药危害的认识明显不足,许多需要进行的研究尚未开展,为更有效地防治耐药细菌病害,避免耐药基因在海洋环境中的广泛传播扩散,保护海洋生态环境及资源,提高养殖产品卫生质量,保护海滨旅游环境及人民群众身体健康,在我国开展海水养殖环境耐药细菌及其抗性机理的调查研究已是刻不容缓,这项工作的重点应在于查清耐药因子的源及其传播途径和动态,并在此基础上寻找治理的科学办法,以达到防患于未然的目的。20世纪滥采乱捕导致的近海渔业资源的严重衰竭是一个非常深刻的教训,希望这种急功近利、涸泽而渔的状况不会再度在海产养殖业中出现。我们应该把海洋细菌耐药性的研究提升到直接关系到人类生存和发展的环境和资源问题的高度来对待,避免海洋成为耐药因子孳生、繁衍、传播和扩散的潘多拉魔盒。  相似文献   
12.
一株深海嗜低温萘降解细菌Nah-1的分离及降解基因研究   总被引:2,自引:0,他引:2  
以萘为唯一碳源和能源从南,中绳海槽深海沉积物中分离得到一株能降解萘的海洋嗜低温细菌Nah-1,测定了该茵的最适生长条件及生长曲线。16S rRNA基因(16SrDNA)序列同源性分析表明该菌属于解环菌属(Cyczocznsticus)。PCR扩增萘降解基因得到目标片段,比对结果表明,相似度最高的基因phnAl来自Cycloclasticus sp.A5,为99%,该基因编码的蛋白是萘双加氧酶大亚基。  相似文献   
13.
深海极端环境深部生物圈微生物学研究综述   总被引:4,自引:0,他引:4  
20世纪下半叶是人类进行自然探索最为活跃的一段时期。新发现、新技术和新概念层出不穷,大大拓展了人们对宇宙和生命的视野和认识。在海洋学领域,深海热液喷口化能自养(chemolithoautotrophy)系统的发现大大激发了人们对洋底生物多样性及生命形式、过程、起源和进化的兴趣和热情(Baross et al.,1985)。最近30年相继开展的国际深海钻探计划(deep sea drilling project,DSDP)和大洋钻探计划(ocean drilling program,ODP)为我们揭示了一个以前未曾想象到的埋藏在海底沉积物和上部洋壳中的海底深部生物圈(subseafloor deep biosphere)微生物世界。近期研究表明, 深海热液系统中的嗜热和极端嗜热古菌据推测就来源于海底深部生物圈(Delaney et al.,1998;Summit et al.,2001),由此推断,生命的真正起源就发生在地球深部生物圈内。巨大的深度和广度,使得海底深部生物圈容纳了大量的微生物生物量和新颖独特的代谢潜力(Whitman et al.,1998)。由于洋壳板块运动而产生的海底地质构造和过程的异质性、洋壳地球化学过程的复杂性,以及在漫长地质年代中的气候变迁和海洋真光层颗粒物沉降输出的历史和地理差异性,埋藏在海底沉积物和上部洋壳中的生命赖以维持和繁衍的能量供给形式具有高度的多样性, 海底深部生物圈蕴育着丰富多样的代谢形式和新颖的生理生化机制(IPSC,2001)。海洋深部生物圈内的古菌群落将作为特定地质微生物标志(geomicrobiological signature),用来指示过去和现代海洋的地球化学变化和地质环境变迁(inagaki et al.,2001)。海洋微生物生态学研究在最近的20年中取得了一些重要进展,与全球海洋地质历史、地质事件、地质过程和地质作用相关的深海微生物生态学研究,已发展成为一门具有独特魅力的新兴学科,即海洋“地质微生物学”(geomicrobiology)。在46亿年的地球历史中,地圈和生物圈的协同进化过程主要是在微生物的作用下完成的,微生物在海洋沉积物和洋壳中的生物地球化学作用,既是微生物的生态学,又是沉积地质过程和洋壳蚀变的动力学,许多原来以为“无机” 的地质过程,其实都是生命活动的结果(汪品先,2003)。在过去的10年中,分子、遗传、生化和基因组学等现代生物技术被引入地质微生物学的研究中,不但揭示了许多地质环境的微生物多样性,而且阐明了微生物在生物地球化学过程中所发挥的独特作用及环境和生态功能(Newman et al.,2002)。海洋深部生物圈微生物的研究已成为新世纪海洋领域中地学和生物学交叉互补、综合研究前沿的一个新热点和生长点,被列入刚刚启动的国际综合大洋钻探计划(Integrated Ocean Drilling Program,IODP)研究项目的首选(IPSC,2001;中国大洋钻探学术委员会,2003)。尽管这一领域的研究才刚刚起步,却已显示了旺盛的生命力和发展应用前景。  相似文献   
14.
海水养殖环境细菌耐药性的危害   总被引:3,自引:0,他引:3  
为解决人口、资源、环境等人类面临的重大问题,海洋作为地球上尚未充分开发的重要疆域而备受重视。中国以海水养殖业为基础的“蓝色农业”在缓解人口增长对陆地农业的压力,促进沿海地区经济的发展中正发挥着重要作用。然而,近10年来,世界范围内海水微生物流行性和暴发性病害相继发生,严重制约了海水养殖业的健康发展(相建海,2003)。为了防治细菌性病害,大量的抗生素药类被应用于养殖过程的各个阶段,巨大的选择压力导致了海水养殖水域耐药细菌的种类和数量的显著增加,养殖生物耐药病原菌病害的发生也越来越频繁,微生物病害防治的难度越来越大…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号