首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1572篇
  免费   69篇
  国内免费   14篇
测绘学   22篇
大气科学   95篇
地球物理   332篇
地质学   595篇
海洋学   118篇
天文学   347篇
综合类   5篇
自然地理   141篇
  2021年   26篇
  2020年   10篇
  2019年   21篇
  2018年   33篇
  2017年   30篇
  2016年   35篇
  2015年   35篇
  2014年   46篇
  2013年   74篇
  2012年   44篇
  2011年   69篇
  2010年   58篇
  2009年   58篇
  2008年   69篇
  2007年   52篇
  2006年   65篇
  2005年   59篇
  2004年   50篇
  2003年   51篇
  2002年   44篇
  2001年   43篇
  2000年   35篇
  1999年   30篇
  1998年   47篇
  1997年   16篇
  1996年   26篇
  1995年   15篇
  1994年   22篇
  1993年   18篇
  1992年   24篇
  1991年   13篇
  1990年   17篇
  1989年   12篇
  1988年   12篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   41篇
  1983年   23篇
  1982年   24篇
  1981年   25篇
  1980年   26篇
  1979年   24篇
  1978年   35篇
  1977年   26篇
  1976年   22篇
  1975年   19篇
  1974年   17篇
  1973年   18篇
  1971年   10篇
排序方式: 共有1655条查询结果,搜索用时 31 毫秒
71.
72.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
73.
74.
The spread of human activities into the deep sea may pose a high risk to benthic communities and affect ecosystem integrity. The deep sea is characterized by physical and biological heterogeneity and different habitat types are likely to differ in their vulnerability to anthropogenic impacts. However, across‐habitat comparisons are rare, and no comprehensive ecological risk assessment has yet been developed. To address this gap in our knowledge, we compared macro‐infaunal community structure in four habitats (slope, canyons, seamounts and methane seeps) at depths between 700 and 1500 m in the Hikurangi Margin and Bay of Plenty regions off New Zealand. The most striking contrast in community structure was between the two study regions, due to an order of magnitude difference in macro‐infaunal abundance that we believe was caused by differences in surface productivity and food availability at the sea bed. We found differences in structural and functional attributes of macro‐infaunal communities among some habitats in the Hikurangi Margin (slope, canyon and seep), but not in the Bay of Plenty. We posit that differences between canyon and slope communities on the Hikurangi Margin are due to enhanced food availability inside canyons compared with adjacent slope habitats. Seep communities were characterized by elevated abundance of both symbiont‐bearing and heterotrophic taxa, and were the most distinct, and variable, among the habitats that we considered on the Hikurangi Margin. Communities of seamounts were not distinct from slope or canyon communities on the Hikurangi Margin, probably reflecting similar environmental conditions in these habitats. The communities of deep‐sea canyon and seep habitats on the Hikurangi Margin were sufficiently dissimilar from each other and from slope habitats to warrant separate management consideration. By contrast, the low dissimilarity between communities of canyon and slope habitats in the Bay of Plenty suggests that habitat‐based management is not required in this region, for macro‐infauna at least. Although the two study regions share similar species pools, populations of the Hikurangi Margin region may be less vulnerable than the sparser populations of the Bay of Plenty due to the higher availability of potential colonizers and faster population growth. Thus regions, and habitats in some regions, should be subject to separate ecological risk assessment to help identify the key risks and consequences of human activities, and to inform options for reducing or mitigating impacts.  相似文献   
75.
This paper examines interactions among syn‐rift continental margin extension, evaporites, particularly rocksalt (halite), deposited in the overlying sedimentary basins, and clastic sediment loading. We present dynamically evolving 2D numerical models that combine syn‐rift lithospheric extension, with salt (viscous halite, 1018–1019 Pa s) and clastic (frictional‐plastic) sediment deposition to investigate how salt is distributed and subsequently mobilized during syn‐rift extension. Example results are shown, contrasting salt deposition in the early, mid and late syn‐rift phases of a single lithospheric extension model. The lithospheric model is chosen to give depth‐dependent extension and intermediate width margins with proximal grabens and a hyperextended distal region. The models exhibit diachronous migration of extension towards the rift axis and this is reflected in the faulting of overlying sediments. The models illustrate the roles of timing of salt deposition, relative to rifting and subsequent sedimentation, in defining the location and deformation of syn‐rift salt, with post‐salt sediment progradation in some models. Late deposition of salt leads to increased lateral extent of the original salt body and decreased variation in salt thickness. Seaward flow of salt increases with later deposition; early syn‐rift salt is deposited and trapped in the grabens, whereas mid and late syn‐rift salt tends to flow towards the distal margin or even over the oceanic crust. Prograding clastic post‐salt sediments drive more substantial seaward movement of mid and late syn‐rift salt. A numerical model of the Red Sea with evaporite deposition during the mid to late syn‐rift period, preceded and followed by aggrading and prograding clastic sediment, shows reasonable agreement with observations from the central Red Sea.  相似文献   
76.
Long-range precipitation forecasts are useful when managing water supplies.Oceanicatmospheric oscillations have been shown to influence precipitation.Due to a longer cycle of some of the oscillations,a short instrumental record is a limitation in using them for long-range precipitation forecasts.The influence of oscillations over precipitation is observable within paleoclimate reconstructions;however,there have been no attempts to utilize these reconstructions in precipitation forecasting.A data-driven model,KStar,is used for obtaining long-range precipitation forecasts by extending the period of record through the use of reconstructions of oscillations.KStar is a nearest neighbor algorithm with an entropy-based distance function.Oceanic-atmospheric oscillation reconstructions include the El Nino-Southern Oscillation(ENSO),the Pacific Decadal Oscillation(PDO),the North Atlantic Oscillation(NAO),and the Atlantic Multi-decadal Oscillation(AMO).Precipitation is forecasted for 20 climate divisions in the western United States.A 10-year moving average is applied to aid in the identification of oscillation phases.A lead time approach is used to simulate a one-year forecast,with a 10-fold cross-validation technique to test the models.Reconstructions are used from 1658-1899,while the observed record is used from 1900-2007.The model is evaluated using mean absolute error(MAE),root mean squared error(RMSE),RMSE-observations standard deviation ratio(RSR),Pearson’s correlation coefficient(R),NashSutcliffe coefficient of efficiency(NSE),and linear error in probability space(LEPS) skill score(SK).The role of individual and coupled oscillations is evaluated by dropping oscillations in the model.The results indicate ’good’ precipitation estimates using the KStar model.This modeling technique is expected to be useful for long-term water resources planning and management.  相似文献   
77.
In this article, we document a detailed analytical characterisation of zircon M127, a homogeneous 12.7 carat gemstone from Ratnapura, Sri Lanka. Zircon M127 has TIMS‐determined mean U–Pb radiogenic isotopic ratios of 0.084743 ± 0.000027 for 206Pb/238U and 0.67676 ± 0.00023 for 207Pb/235U (weighted means, 2s uncertainties). Its 206Pb/238U age of 524.36 ± 0.16 Ma (95% confidence uncertainty) is concordant within the uncertainties of decay constants. The δ18O value (determined by laser fluorination) is 8.26 ± 0.06‰ VSMOW (2s), and the mean 176Hf/177Hf ratio (determined by solution ICP‐MS) is 0.282396 ± 0.000004 (2s). The SIMS‐determined δ7Li value is ?0.6 ± 0.9‰ (2s), with a mean mass fraction of 1.0 ± 0.1 μg g?1 Li (2s). Zircon M127 contains ~ 923 μg g?1 U. The moderate degree of radiation damage corresponds well with the time‐integrated self‐irradiation dose of 1.82 × 1018 alpha events per gram. This observation, and the (U–Th)/He age of 426 ± 7 Ma (2s), which is typical of unheated Sri Lankan zircon, enable us to exclude any thermal treatment. Zircon M127 is proposed as a reference material for the determination of zircon U–Pb ages by means of SIMS in combination with hafnium and stable isotope (oxygen and potentially also lithium) determination.  相似文献   
78.
Controls on organic matter cycling across the tidal wetland-estuary interface have proved elusive, but high-resolution observations coupled with process-based modeling can be a powerful methodology to address shortcomings in either methodology alone. In this study, detailed observations and three-dimensional hydrodynamic modeling are used to examine biogeochemical exchanges in the marsh-estuary system of the Rhode River, MD, USA. Analysis of observations near the marsh in 2015 reveals a strong relationship between marsh creek salinity and dissolved organic matter fluorescence (fDOM), with wind velocity indirectly driving large amplitude variation of both salinity and fDOM at certain times of the year. Three-dimensional model results from the Finite Volume Community Ocean Model implemented for the wetland system with a new marsh grass drag module are consistent with observations, simulating sub-tidal variability of marsh creek salinity. The model results exhibit an interaction between wind-driven variation in surface elevation and flow velocity at the marsh creek, with northerly winds driving increased freshwater signal and discharge out of the modeled wetland during precipitation events. Wind setup of a water surface elevation gradient axially along the estuary drives the modeled local sub-tidal flow and thus salinity variability. On sub-tidal time scales (>36 h, <1 week), wind is important in mediating dissolved organic matter releases from the Kirkpatrick Marsh into the Rhode River.  相似文献   
79.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
80.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号