首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   15篇
地球物理   20篇
地质学   59篇
海洋学   5篇
天文学   73篇
自然地理   8篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   15篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   10篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
  1970年   2篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
81.
Analytical data on major elements and 31 trace elements in olivine nephelinites, nepheline basanites, basanitic alkali olivine basalts and their differentiates (tephrites, hawaiites, mugearites, benmoreites, latites, phonolites and trachytes) from Hegau, Kaiserstuhl, Rhön, Hessian Depression, Vogelsberg, Westerwald, Siebengebirge, E Eifel and Hocheifel are evaluated. They were based on 400 samples with new or unpublished data on about one third of the rocks. The Sr–Nd isotopic compositions for 78 rocks are included. The alkali basaltic volcanism is caused by adiabatic decompression of asthenospheric mantle updomed to a minimum depth of 50 km in connection with the Alpine continent collision. The chemical compositions of the primary basaltic melts from the different areas are similar containing about one hundred-fold enrichment of highly incompatible elements relative to the primitive mantle from partial melting of depleted and secondarily enriched peridotite. The elements Cs, K, Pb and Ti are specifically depleted in the basalts partly because of phlogopite being residual at partial melting. The Tertiary alkali basalts range in Nd-isotopic composition from 0.51288 to 0.51273 and in Sr-isotopic ratios from 0.7032 to 0.7042. These ranges indicate mixtures of HIMU, depleted and enriched mantle components in the metasomatically altered peridotite source which resembles that of certain ocean islands. The Nd-Sr-isotopic compositions of the Quaternary E Eifel are close to bulk Earth ratios. East and W Eifel plots differ distinctly from the Tertiary Hocheifel which is geographically intermediate. This isotopic difference, beside specific K/Na ratios, is probably caused by separate metasomatic pulses that immediately preceded the respective periods of volcanism. The metasomatically altered mantle had partly primitive mantle signatures (Nb/Ta, Zr/Sm and Th/U ratios) and partly ocean island (or MORB) source properties (Rb/Cs). A MORB source can be excluded because of the low K/Rb and high Th/U ratios. A correlation of D with 87Sr/86Sr in amphibole and phlogopite and a slightly larger 18O than in MORB is conformable with a seawater and crustal impact on the source of alkali basalts. Slightly higher than average water concentrations in the source of certain primary basaltic melts (indicated by amphibole phenocrysts in their basalts) are required for differentiation of these basalts in magma chambers of the upper crust. Model calculations are presented to explain compositions of differentiates which range from about 60% to about 20% residual melt. The latter are represented by phonolites and trachytes. The Nd- and Sr-isotopic signatures of the majority of differentiates indicate contamination by a granitic partial melt from the wall rocks of magma chambers. Olivine nephelinite magma was the common source of contaminated differentiates.  相似文献   
82.
Fluid transport on the grain-scale controls many rock properties and governs chemical exchange. Charnockites from Lofoten indicate fluid penetration into ternary alkali feldspars controlled by their microtextures. In a process of fluid infiltration at granulite-facies conditions (∼600°C and 8–11 kbar), tiny pyroxenes enclosed in alkali feldspar reacted to amphiboles, which are always spatially connected to perthitic albite. Investigation of these microtextures by TEM imaging of Focused Ion Beam (FIB) prepared foils revealed that pyroxenes in contact with albite lamellae show dissolution features. An amorphous Fe- and Cl-bearing material interpreted to be a residuum of the percolating fluid was found within albite lamellae. Textures and mineral compositions indicate that a Cl-rich aqueous fluid attacked the lamellae, which then provided pathways for further fluid flow. A correspondence was found between feldspar compositions, their microtexture and their degree of alteration as a result of their permeability for fluids at specific temperatures. Hence, in addition to pressure and temperature, small variations of feldspar composition can strongly influence the fluid permeability of feldspathic rocks under lower crustal conditions.  相似文献   
83.
The terrestrial surface, the “skin of the earth”, is an important interface for global (geochemical) material fluxes between major reservoirs of the Earth system: continental and oceanic crust, ocean and atmosphere. Because of a lack in knowledge of the geochemical composition of the terrestrial surface, it is not well understood how the geochemical evolution of the Earth’s crust is impacted by its properties. Therefore, here a first estimate of the geochemical composition of the terrestrial surface is provided, which can be used for further analysis. The geochemical average compositions of distinct lithological classes are calculated based on a literature review and applied to a global lithological map. Comparison with the bulk composition of the upper continental crust shows that the geochemical composition of the terrestrial surface (below the soil horizons) is significantly different from the assumed average of the upper continental crust. Specifically, the elements Ca, S, C, Cl and Mg are enriched at the terrestrial surface, while Na is depleted (and probably K). Analysis of these results provide further evidence that chemical weathering, chemical alteration of minerals in marine settings, biogeochemical processes (e.g. sulphate reduction in sediments and biomineralization) and evaporite deposition are important for the geochemical composition of the terrestrial surface on geological time scales. The movement of significant amounts of carbonate to the terrestrial surface is identified as the major process for observed Ca-differences. Because abrupt and significant changes of the carbonate abundance on the terrestrial surface are likely influencing CO2-consumption rates by chemical weathering on geological time scales and thus the carbon cycle, refined, spatially resolved analysis is suggested. This should include the recognition of the geochemical composition of the shelf areas, now being below sea level.  相似文献   
84.
New conventional and sensitive high-resolution ion microprobe zircon U-Pb dating has led to a new understanding of the subdivision and evolution of the Amazon Craton during Precambrian time, with major improvements and changes made to the previous Rb-Sr based model. The interpretation of U-Pb and Sm-Nd isotopic data identifies eight main Precambrian tectonic provinces in the Craton, with ages ranging from 3.1 to 0.99 Ga. Some of the provinces were generated by accretional, arc-related processes (Carajás, Transamazonic, Tapajós-Parima and Rondônia-Juruena) and others by recycling of continental crust (Central Amazon, Rio Negro and Sunsas). The exposed Archean crust is restricted to the east (Carajás and south Amapá in Brazil) and north (Imataca in Venezuela) of the craton, indicating that the Amazon Craton is largely a Proterozoic crust. The Carajás-Imataca (3.10–2.53 Ga) and Transamazonian (2.25–2.00 Ga) Provinces are composed predominantly of granite-greenstone terranes. The Tapajós-Parima (2.10–1.87 Ga) and Rondônia-Juruena (1.75–1.47 Ga) Provinces represent new crust added as orogenic belts, while the Rio Negro (1.86–1.52 Ga) and Sunsas (1.33–0.99 Ga) Provinces originated mainly by magmatic-tectonic recycling of the above two orogenic belts. The only zone with a prominent northeast trend is the poorly known K'Mudku Shear Belt, characterized by a 1.20 Ga shear zone which deforms the rocks of at least three different provinces (Rio Negro, Tapajós-Parima and Transamazonic). The Central Amazon Province comprises mostly Orosirian volcano-plutonic rocks (Uatumã Magmatism) and is a terrane in which the exposed crustal structure and deformation are pluton-related. The Sm-Nd TDM model ages and Nd suggest that the Central Amazon Province was generated by the partial melting of Archean continental crust (Carajás Province?), perhaps related to underplating that began at the end of the Tapajós-Parima Orogeny (1.88–1.86 Ga).  相似文献   
85.
Luo  Wei  Hartmann  John F.  Wang  Fahui 《GeoJournal》2010,75(1):93-104
Tai is a family of related languages and dialects, a subgroup of the Tai-Kadai languages, spoken by more than 85 million speakers in southern China and Southeast Asia. This paper uses GIS to map the spatial distribution of Tai toponyms (Muang, Chiang and Viang) and analyzes their relationship with terrain characteristics. In Tai, Muang means flat “basin”, Chiang means “town”, and Viang provides defense for a Chiang. These Tai toponyms are found at places with a significantly higher compound topographic index (or wetness index) than others. Watershed basins with more Muang toponyms are characterized by lower elevation, gentler slope, near zero concavity. All of these are consistent with physical conditions favorable for wet rice agriculture, culture, and commerce. The transnational spatial distribution of these toponyms and associated terrain characteristics reveal a significant regional pattern that reflects not only the geomorphology of the places where Tai expanded and settled, but also a common history and culture of naming places influenced by their wet rice agriculture and associated cultural practices and commerce.  相似文献   
86.
Ridges that resemble terrestrial moraines are commonly visible at the foot of many mid-latitude crater walls in Mars Global Surveyor Mars Orbiter Camera images. These moraine-like ridges are often associated with hillside gullies, mantling material, and glacier-like flows, and are usually in contact with crater fill, suggesting possible interrelationships. We consider terrestrial glacier systems that may be analogs of martian moraine-like ridges and glacier-like flows and suggest that the formation of some gullies and crater fill is intimately tied to ice deposition, ice flow, and rock-glacier processes. Upper limits on age suggest the possibility that many of these features formed during the last, or last few, high obliquity cycles.  相似文献   
87.
A survey of craters in the vicinity of Newton Basin, using high-resolution images from Mars Global Surveyor and Mars Odyssey, was conducted to find and analyze examples of gullies and arcuate ridges and assess their implications for impact crater degradation processes. In the Phaethontis Quadrangle (MC-24), we identified 225 craters that contain these features. Of these, 188 had gullies on some portion of their walls, 118 had arcuate ridges at the bases of the crater walls, and 104 contained both features, typically on the same crater wall. A major result is that the pole-facing or equator-facing orientation of these features is latitude dependent. At latitudes >44° S, equator-facing orientations for both ridges and gullies are prevalent, but at latitudes <44° S, pole-facing orientations are prevalent. The gullies and arcuate ridges typically occupy craters between ∼2 and 30 km in diameter, at elevations between −1 and 3 km. Mars Orbiter Laser Altimeter (MOLA) elevation profiles indicate that most craters with pole-facing arcuate ridges have floors sloping downward from the pole-facing wall, and some of these craters show asymmetry in crater rim heights, with lower pole-facing rims. These patterns suggest viscous flow of ice-rich materials preferentially away from gullied crater walls. Clear associations exist between gullies and arcuate ridges, including (a) geometric congruence between alcoves and sinuous arcs of arcuate ridges and (b) backfilling of arcuate ridges by debris aprons associated with gully systems. Chronologic studies suggest that gullied walls and patterned crater floor deposits have ages corresponding to the last few high obliquity cycles. Our data appear consistent with the hypothesis that these features are associated with periods of ice deposition and subsequent erosion associated with obliquity excursions within the last few tens of millions of years. Arcuate ridges may form from cycles of activity that also involve gully formation, and the ridges may be in part due to mass-wasted, ice-rich material transported downslope from the alcoves, which then interacts with previously emplaced floor deposits. Most observed gullies may be late-stage features in a degradational cycle that may have occurred many times on a given crater wall.  相似文献   
88.
The Neoproterozoic-Eoplalaeozoic Brasiliano orogeny at the eastern margin of the Rio de la Plata craton in southernmost Brazil and Uruguay comprises a complex tectonic history over 300?million years. The southern Brazilian Shield consists of a number of tectono-stratigraphic units and terranes. The S?o Gabriel block in the west is characterized by c.760?C690?Ma supracrustal rocks and calc-alkaline orthogneisses including relics of older, c. 880?Ma old igneous rocks. Both igneous and metasedimentary rocks have positive ??Nd(t) values and Neoproterozoic TDM model ages; they formed in magmatic arc settings with only minor input of older crustal sources. A trondhjemite from the S?o Gabriel block intruding dioritc and tonalitic gneisses during the late stages of deformation (D3) yield an U?CPb zircon age (LA-ICP-MS) of 701?±?10?Ma giving the approximate minimum age of the S?o Gabriel accretionary event. The Encantadas block further east, containing the supracrustal Porongos belt and the Pelotas batholith, is in contrast characterized by reworking of Neoarchean to Palaeoproterozoic crust. The 789?±?7?Ma zircon age of a metarhyolite intercalated with the metasedimentary succession of the Porongos belt provides a time marker for the basin formation. Zircons of a sample from tonalitic gneisses, constituting the Palaeoproterozoic basement of the Porongos belt, form a cluster at 2,234?±?28?Ma, interpreted as the tonalite crystallization age. Zircon rims show ages of 2,100?C2,000?Ma interpreted as related to a Palaeoproterozoic metamorphic event. The Porongos basin formed on thinned continental crust in an extensional or transtensional regime between c. 800?C700?Ma. The absence of input from Neoproterozoic juvenile sources into the Porongos basin strongly indicates that the Encantadas and S?o Gabriel blocks were separated terranes that became juxtaposed next to each other during the Brasiliano accretional events. The tectonic evolution comprises two episodes of magmatic arc accretion to the eastern margin of the Rio de la Plata craton, (i) accretion of an intra-oceanic arc at c. 880?Ma (Passinho event) and (ii) accretion of the 760?C700?Ma Cambaí/Vila Nova magmatic arc (S?o Gabriel event). The latter event also includes the collision of the Encantadas block with the Rio de la Plata craton to the west. Collision and crustal thickening was followed by sinistral shear along SW?CNE-trending orogen-parallel crustal-scale shear zones that can be traced from southern Brazil to Uruguay and have been active between 660 and 590?Ma. Voluminous granitic magmatism in the Pelotas batholith spatially related to shear zones is interpreted as late- to post-orogenic magmatism, possibly assisted by lithospheric delamination. It marks the transition to the post-orogenic molasse stage. Localized deformation by reactivation of preexisting shear zones continued until c. 530?Ma and can be assigned to final stages of the amalgamation of West Gondwana.  相似文献   
89.
In order to investigate the parameters controlling the heterotrophic protists (nano-microzooplankton) on the continental shelf of the southern Bay of Biscay, plankton communities and their physico-chemical environment were studied 4 times in February, April, June and September–October 2004 at three stations in the euphotic zone in the Bay of Biscay. The abundance and carbon biomass of heterotrophic protists (ciliates, heterotrophic dinoflagellates and nanoflagellates) as well as all the others groups of plankton (picoplankton, nanophytoplankton, diatoms, autotrophic dinoflagellates, metazoan microzooplankton and mesozooplankton), the environmental parameters and the primary and bacteria production were evaluated at each sampling period. Microzooplankton grazing experiments were undertaken at the same time. Ciliates and heterotrophic dinoflagellates accounted for the main major component of nano- and microzooplankton communities in term of biomass. The total carbon biomass of heterotrophic protists was highest in spring and lowest at the end of summer. The development of heterotrophic protists started after a winter microphytoplankton bloom (principally large diatoms), the biomass was lower in June and was low in September (through inappropriate prey). The carbon requirement of microzooplankton ranged from 50 to more than 100% of daily primary, bacterial and nanoflagellate production. The heterotrophic protist community was predominantly constrained by bottom-up control in spring and at the end of summer via food availability and quality.  相似文献   
90.
Abstract— Gamma rays from radioactive byproducts of cosmic nucleosynthesis are direct messengers from nuclear processes taking place in various cosmic sites, and can be measured with telescopes operated in space. Due to low detector sensitivity, up until now, only a handful of sources have been detected in that electromagnetic window. Cobalt lines from SN1987A and 44Ti lines from the Cassiopeia A (Cas A) supernova remnant offer unique constraints on the properties of the innermost regions of core collapse supernovae. Diffuse gamma‐ray lines from the decay of radioactive 26Al and the annihilation of positrons are bright enough for mapping the Milky Way in the MeV regime, and are both measured by recent spaceborne spectrometers with unprecedented precision. This constrains the sources of Al production and the state of interstellar gas in the vicinity of these sites: the total mass of 26Al produced by stellar sources throughout the Galaxy is estimated to be ~3 M per Myr, and the interstellar medium near those sources appears to be characterized by velocities of ~100 km s?1. Positron annihilation must occur in a modestly ionized, warm phase of the interstellar medium, but at present the major positron production site(s) remain unknown. The spatial distribution of the annihilation gamma‐ray emission constrains positron production sites and positron propagation in the Galaxy. 60Fe radioactivity has been clearly detected recently; the flux ratio relative to 26Al of about 15% is on the lower side of predictions from massive star and supernova nucleosynthesis models. Those views at nuclear and astrophysical processes in and around cosmic sources by space‐based gamma‐ray telescopes offer invaluable information on cosmic nucleosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号