首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   8篇
  国内免费   1篇
测绘学   1篇
大气科学   15篇
地球物理   19篇
地质学   58篇
海洋学   5篇
天文学   73篇
自然地理   8篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   15篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   10篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
  1970年   2篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
1.
The time frame of the three main geological events in the Neoproterozoic Cambaí Complex, juvenile São Gabriel belt in the southern Brazilian Shield is established by integrating field mapping, back-scattered electron imaging and sensitive high-resolution ion microprobe (SHRIMP II) U–Pb dating of 96 zircon crystals from nine granitic and metasedimentary rock samples. The three events are: (1) voluminous flat-lying paragneisses (Cambaizinho Complex) and orthogneisses (Vila Nova gneisses) between 735 and 718 Ma, (2) tonalite–trondhjemite association (Lagoa da Meia-Lua Suite) between 710 and 690 Ma, and (3) late granodiorite intrusions (Sanga do Jobim Suite) at 680 Ma. An additional older volcanic event (Campestre Formation) was dated at 753 Ma. These results are most significant for the reconstruction of West Gondwana.  相似文献   
2.
3.
This introductory editorial paper provides a review and prospective outlook of the achievements and challenges in karst research under a changing environment. A brief discussion of the past and future karst research has been focused on: (1) data and new technologies; (2) modeling of karst flow and reactive transport; (3) responses of karst hydrosystems to climate variability and changes across scales.  相似文献   
4.
About half of the lunar meteorites in our collections are feldspathic breccias. Acquiring geochronologic information from these breccias is challenging due to their low radioactive-element contents and their often polymict nature. We used high-spatial-resolution (5 μm) NanoSIMS (nanoscale secondary ion mass spectrometry) U-Pb dating technique to date micro-zircons in the lunar feldspathic meteorites Dhofar 1528 and Dhofar 1627. Three NanoSIMS dating spots of two zircon grains from Dhofar 1528 show a discordia with an upper intercept at 4354 ± 76 Ma and a lower intercept at 332 ± 1407 Ma (2σ, MSWD = 0.01, p = 0.91). Three spots of two zircon grains in Dhofar 1627 define a discordia with an upper intercept at 3948 ± 30 Ma and a lower intercept at 691 ± 831 Ma (2σ, MSWD = 0.40, p = 0.53). Both samples likely experienced shock metamorphism caused by impacts. Based on the clastic nature, lack of recrystallization and the consistent U-Pb and Pb-Pb dates of the zircons in Dhofar 1528, the U-Pb date of 4354 Ma is interpreted as the crystallization age of its Mg-suite igneous precursor. Some of the Dhofar 1627 zircons show poikilitic texture, a crystallization from the matrix impact melt, so the U-Pb date of 3948 Ma corresponds to an impact event, likely the Imbrium basin-forming event. These data are the first radiometric ages for these two meteorites and demonstrate that in situ (high spatial resolution) U-Pb dating has potential for extracting geochronological information about igneous activities and impact events from lunar feldspathic and polymict breccias.  相似文献   
5.
Water quality in less-developed countries is often subject to substantial degradation, but is rarely studied in a systematic way. The concentration and flux of major ions, carbon, nitrogen, silicon, and trace metals in the heavily urbanized Bagmati River within Kathmandu Valley, Nepal, are reported. The concentrations of all chemical species increased with distance downstream with the exceptions of protons and nitrate, and showed strong relationships with population density adjacent to the river. Total dissolved nitrogen (TDN), dominated by NH4, was found in high concentrations along the Bagmati drainage system. The export of dissolved organic carbon (DOC) and TDN were 23 and 33 tons km?2 year?1, respectively, at the outlet point of the Kathmandu Valley, much higher than in relatively undeveloped watersheds. The cationic and silica fluxes were 106 and 18 tons km?2 year?1 at the outlet of the Bagmati within Kathmandu Valley, and 36 and 32 tons km?2 year?1 from the relatively pristine headwater area. The difference between headwaters and the urban site suggests that the apparent weathering flux is three times higher than the actual weathering rate in the heavily urbanized Bagmati basin. Fluxes of cations and silica are above the world average, as well as fluxes from densely populated North American and European watersheds. End-member composition of anthropogenic sources like sewage or agricultural runoff is needed to understand the drivers of this high rate of apparent weathering.  相似文献   
6.
7.
We estimate the levels of turbulence in the envelopes of class 0 and I protostars using a model based on measurements of the peak separation of double-peaked asymmetric line profiles. We use observations of 20 protostars of both class 0 and I taken in the  HCO+(J = 3 → 2)  line that show the classic double-peaked profile. We find that some class 0 sources show high levels of turbulence, whilst others demonstrate much lower levels. In class I protostars, we find predominantly low levels of turbulence. The observations are consistent with a scenario in which class 0 protostars form in a variety of environments and subsequently evolve into class I protostars. The data do not appear to be consistent with a recently proposed scenario in which class 0 protostars can only form in extreme environments.  相似文献   
8.
Abstract— This paper addresses several current issues related to use of craters in interpreting planetary surface histories. The primary goal is to test the widely adopted hypothesis of multiple populations of impactors at different times or places in the Solar System. New data presented here revise a “lunar highland” crater diameter distribution that has been widely used as evidence of an early distinct population of impactors. This curve, which has a depression of the size distribution at mid-sizes, does not, in fact, represent the lunar highlands generally. I show that it is associated with regions of intercrater plains. The more extensive the obliteration by intercrater plains, the deeper the depression. Modeling indicates that the depression of the curve is caused by the obliteration process itself. The oldest, most cratered regions of lunar highlands do not show the depression. These findings call into question earlier interpretations of multiple populations of impactors in the Solar System and of a distinctive primordial population. The present work is consistent, instead, with (1) a relatively uniform size distribution of interplanetary impactors, of mixed origins, back to 4 Ga ago and throughout the sampled Solar System; (2) fragmentation as the process that produced that size distribution; (3) saturation equilibrium on the most heavily cratered surfaces; and (4) differences in structure in the size distribution caused not by distinct impactor populations but by episodes of endogenic obliteration. If accepted, these results would modify some studies of solar system evolution, including assertions of two to five distinct populations of impactors, assumptions of lack of saturation equilibrium, and identifications of specific heliocentric or planetocentric sources for impactors within outer planet satellite systems.  相似文献   
9.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号