首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   5篇
  国内免费   4篇
测绘学   3篇
大气科学   28篇
地球物理   30篇
地质学   17篇
海洋学   29篇
天文学   25篇
综合类   2篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   15篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1992年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有136条查询结果,搜索用时 350 毫秒
101.
102.
Korean Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua observations of the variation in ocean color at the sea surface were utilized to monitor the impact of nutrient-rich sewage sludge disposal in the oligotrophic area of the Yellow Sea. MODIS revealed that algal blooms persisted in the spring annually at the dump site in the Yellow Sea since year 2000 to the present. A number of implications of using products of the satellite ocean color imagers were exploited here based on the measurements in the Yellow Sea. GOCI observes almost every hour during the daylight period, every day since June 2011. Therefore, GOCI provides a powerful tool to monitor waste disposal at sea in real time. Tracking of disposal activity from a large tanker was possible hour by hour from the GOCI timeseries images compared to MODIS. Smaller changes in the color of the ocean surface can be easily observed, as GOCI resolves images at smaller scales in space and time in comparison to polar orbiting satellites, e.g., MODIS. GOCI may be widely used to monitor various marine activities in the sea, including waste disposal activity from ships.  相似文献   
103.
The high primary production enhanced by anticyclonic eddies and hourly variation pattern in the productivity during the spring season in the East Sea were first investigated using the first Korean Geostationary Ocean Color Imager (GOCI). Even though the stratification for a seasonal spring bloom is not well developed in the water column in early April in the East Sea, a physical upward water flux movement at the periphery of the anticyclonic eddies could remain the phytoplankton in euphotic zone to sustain high chlorophyll-a concentration conditions in the Ulleung Basin. At this time, nutrients were no major controlling factor for phytoplankton growth since concentrations of major nutrients (nitrate, silicate, and phosphate) were relatively high in the observed eddy sites based on the observation data from the Korean Oceanographic Data Center (KODC). The estimated mixed layer depth (MLD) significantly shallower at the periphery supports for this mechanism. The hourly primary productivity estimation based on a Carbon-based Productivity Model (CbPM) provides a bimodal pattern along the time especially in L1 with an approximately one order magnitude difference between the lowest and highest values of productivities on 5 April, 2011. Potential possibilities for this large discrepancy in the hourly productivity and some thoughts on a short time in situ incubation method were discussed.  相似文献   
104.
This paper provides initial validation results for GOCI-derived water products using match-ups between the satellite and ship-borne in situ data for the period of 2010?C2011, with a focus on remote-sensing reflectance (R rs ). Match-up data were constructed through systematic quality control of both in situ and GOCI data, and a manual inspection of associated GOCI images to identify pixels contaminated by cloud, land and inter-slot radiometric discrepancy. Efforts were made to process and quality check the in situ R rs data. This selection process yielded 32 optimal match-ups for the R rs spectra, chlorophyll a concentration (Chl_a) and colored dissolved organic matter (CDOM), and with 20 match-ups for suspended particulate matter concentration (SPM). Most of the match-ups are located close to shore and thus the validation should be interpreted limiting to near-shore coastal waters. The R rs match-ups showed the mean relative errors of 18?C33% for the visible bands with the lowest 18?C19% for the 490 nm and 555 nm bands and 33% for the 412 nm band. Correlation for the R rs match-ups was high in the 490?C865 nm bands (R2=0.72?C0.84) and lower in the 412 nm band (R2=0.43) and 443 nm band (R2=0.66). The match-ups for Chl_a showed a low correlation (<0.41) although the mean absolute percentage error was 35% for the GOCI standard Chl_a. The CDOM match-ups showed an even worse comparison with R2<0.2. These match-up comparison for Chl_a and CDOM would imply the difficulty to estimate Chl_a and CDOM in near-shore waters where the variability in SPM would dominate the variability in R rs . Clearly, the match-up statistics for SPM was better with R2=0.73 and 0.87 for two evaluated algorithms, although GOCI-derived SPM overestimated low concentration and underestimated high concentration. Based on this initial match-up analysis, we made several recommendations -1) to collect more offshore under-water measurements of the R rs data, 2) to include quality flags in level-2 products, 3) to introduce an ISRD correction in the GOCI processing chain, 4) to investigate other types of in-water algorithms such as semianalytical ones, and 5) to investigate vicarious calibration for GOCI data and to maintain accurate and consistent calibration of field radiometric instruments.  相似文献   
105.
This paper describes an atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI) and its early phase evaluation. This algorithm was implemented in GOCI Data Processing System (GDPS) version 1.1. The algorithm is based on the standard SeaWiFS method, which accounts for multiple scattering effects and partially updated in terms of turbid case-2 water correction, optimized aerosol models, and solar angle correction per slot. For turbid water correction, we used a regional empirical relationship between water reflectance at the red (660 nm) and near infrared bands (745 nm and 865 nm). The relationship was derived from turbid pixels in satellite images after atmospheric correction, and processed using aerosol properties derived for neighboring non-turbid waters. For validation of the GOCI atmospheric correction, we compared our results with in situ measurements of normalized water leaving radiance (nL w ) spectra that were obtained during several cruises in 2011 around Korean peninsula. The match up showed an acceptable result with mean ratio of the GOCI to in situ nL w (??), 1.17, 1.24, 1.26, 1.15, 0.86 and 0.99 at 412 nm, 443 nm, 490 nm, 555 nm, 660 nm and 680 nm, respectively. It is speculated that part of the deviation arose from a lack of vicarious calibration and uncertainties in the above water nLw measurements.  相似文献   
106.
Bhavya  P. S.  Kim  Bo Kyung  Jo  Naeun  Kim  Kwanwoo  Kang  Jae Joong  Lee  Jae Hyung  Lee  Dabin  Lee  Jang Han  Joo  HuiTae  Ahn  So Hyun  Kim  Yewon  Min  Jun-Oh  Kang  Min Gu  Yun  Mi Sun  Kang  Chang Keun  Lee  Sang Heon 《Ocean Science Journal》2019,54(1):1-14
Ocean Science Journal - Biochemical composition of phytoplankton is a key indicator of the physiological and nutritional status of phytoplankton. A balanced biochemical pattern represents a healthy...  相似文献   
107.
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Niño-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 1982–2004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.  相似文献   
108.
Infrared radiance spectra measured in space or on the ground have been used for many applications, such as the retrieval of atmospheric temperature and humidity profiles. The Korean Meteorological Administration (KMA) recently installed an Atmospheric Emitted Radiance Interferometer (AERI) system at the Korea Global Atmosphere Watch Center (36°32??N, 125°19??E) in Anmyondo to measure the downward radiance spectra on the ground. For further utilization of such interferometeric radiance measurements, an accurate line-by-line radiative transfer model is required. This study introduces a line-by-line radiative transfer model developed at Kyungpook National University (KNU_LBL) and presents comparisons of spectra simulated using the KNU_LBL model and measured by the AERI system, that is installed inside a secure container. When compared with the Atmospheric and Environmental Research (AER) radiative transfer codes, the KNU_LBL model provides nearly identical spectra for various model atmospheres. The simulated spectra are also in good agreement with the AERI spectra for clear sky conditions, and a further improvement is made when taking into account of the emissions and absorption by CO2 and H2O for the light path inside the container, even though the path is short.  相似文献   
109.
Groundwater has played an important role in economic development in Southeast Asian countries, but some problems caused by nature or human actions such as contamination, over pumping, and land subsidence bring the necessity of more systematic groundwater monitoring wells. The analytical hierarchy process with pairwise comparison was used to allocate and organize the regional groundwater monitoring wells in five regions, Thailand, Cambodia, East/West Malaysia, and South Korea. Five different multi criteria decision models, which were composed of three primary criteria and eight secondary criteria, were developed based on the answers of the questionnaire from 76 groundwater experts in Thailand, 100 in Cambodia, 101 in East Malaysia, 87 in West Malaysia, and 93 in South Korea. It was revealed that the weights of model criteria for each country, which also represent relative importance on groundwater monitoring, were different according to the diverse groundwater situation. The most important factor to determine the number of monitoring well was ‘number of households using only groundwater as a water source’ for Thailand and South Korea, ‘number of contamination sources’ for Cambodia, ‘amount of groundwater use for drinking-water supply’ for East Malaysia, and ‘number of wells with contaminated water’ for West Malaysia.  相似文献   
110.
Pore pressure model based on accumulated stress   总被引:2,自引:2,他引:0  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号