首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   22篇
  国内免费   11篇
测绘学   4篇
大气科学   58篇
地球物理   101篇
地质学   195篇
海洋学   74篇
天文学   67篇
综合类   1篇
自然地理   69篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   13篇
  2019年   10篇
  2018年   16篇
  2017年   24篇
  2016年   25篇
  2015年   13篇
  2014年   21篇
  2013年   26篇
  2012年   23篇
  2011年   33篇
  2010年   40篇
  2009年   30篇
  2008年   30篇
  2007年   38篇
  2006年   37篇
  2005年   15篇
  2004年   24篇
  2003年   12篇
  2002年   13篇
  2001年   5篇
  2000年   13篇
  1999年   8篇
  1998年   17篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有569条查询结果,搜索用时 31 毫秒
91.
92.
Brazilian agricultural census data at the municipal level are used to develop and map a simple index of staple food versus nonstaple food agriculture for Brazil over time (1996–2006). The results show spatial variation in the direction and degree of the shift toward or away from staple food cropping across Brazil. The index is presented as an important methodological step toward a systematic geographic understanding of crop share changes surrounding food versus fuel and other nonfood crop production.  相似文献   
93.
Comprehensive hazard mitigation involves (1) understanding natural systems, (2) assessment of interactions within and between social systems and the built environment, and (3) understanding geo-spatial processes. To achieve this, local emergency managers must recognize variability in vulnerable populations exposed to hazards and develop place-based emergency plans accordingly. In this study, we assess whether cities in Los Angeles County are subject to disproportionally greater earthquake losses modeled from a M7.8 earthquake on the San Andreas fault. Furthermore, we analyze whether the variation in demographic and socioeconomic characteristics across cities is associated with the earthquake losses. We were able to explain 23.2?% of variance in economic losses by looking at the percentage of minority residents, income, and renter residents in a city [F(3,84)?=?8.47; p?<?.001]. Cities with primarily minority residents had greater economic losses when compared to cities with primarily White residents (b?=?1.01; p?<?.001). When looking at the association between demographic predictors and potential casualty rate, the percentage of Hispanic residents was positively associated with the potential casualty rate. We argue that knowledge of the relationship between earthquake hazard and the demographic characteristics of people in the area at risk is essential to mitigate the local impact from earthquakes. In other words, we apply social vulnerability assessment as part of a comprehensive risk management framework to accelerate recovery after an event. Local policy makers and the private sector can use this approach to gain a better understanding of a city??s social vulnerability and adapt their preparedness efforts accordingly.  相似文献   
94.
We evaluated the prevalence of partial migration, coexisting resident and migratory life history types, within six white perch (Morone americana) populations in sub-estuaries (Upper Bay, and Potomac, Choptank, Nanticoke, James, and York Rivers) of the Chesapeake Bay. Otolith stable isotope (δ18O) values were used to resolve fish habitat use along an estuarine salinity gradient and define resident or migratory behavior. The majority of adults within Upper Bay and Potomac River populations were resident, whereas individuals from the Choptank, Nanticoke, James, and York Rivers were predominantly migratory. Beyond population differences, large interannual variability in life history types was observed, likely due to differences in estuarine conditions that influence growth rate of individuals (e.g., temperature, zooplankton density). Because we observed partial migration in all study populations, we suggest that this trait is characteristic of this species, permitting plastic responses to variation in the estuarine environment.  相似文献   
95.
This study investigates multivariable and multiscalar climate-??18O relationships, through the use of statistical modeling and simulation. Three simulations, of increasing complexity, are used to generate time series of daily precipitation ??18O. The first simulation uses a simple local predictor (daily rainfall amount). The second simulation uses the same local predictor plus a larger-scale climate variable (a daily NAO index), and the third simulation uses the same local and non-local predictors, but with varying seasonal effect. Since these simulations all operate at the daily timescale, they can be used to investigate the climate-??18O patterns that arise at daily-interannual timescales. These simulations show that (1) complex links exist between climate-??18O relationships at different timescales, (2) the short-timescale relationships that underlie monthly predictor-??18O relationships can be recovered using only monthly ??18O and daily predictor variables, (3) a comparison between the simulations and observational data can elucidate the physical processes at work. The regression models developed are then applied to a 2-year dataset of monthly precipitation ??18O from Dublin and compared with event-scale data from the same site, which illustrates that the methodology works, and that the third regression model explains about 55% of the variance in ??18O at this site. The methodology introduced here can potentially be applied to historic monthly ??18O data, to better understand how multiple-integrated influences at short timescales give rise to climate-??18O patterns at monthly-interannual timescales.  相似文献   
96.
Entanglement with plastic debris is a major cause of mortality in marine taxa, but the population-level consequences are unknown. Some seabirds collect marine debris for nesting material, which may lead to entanglement. Here we investigate the use of plastics as nesting material by northern gannets Morus bassanus and assess the associated levels of mortality. On average gannet nests contained 469.91 g (range 0-1293 g) of plastic, equating to an estimated colony total of 18.46 tonnes (range 4.47-42.34 tonnes). The majority of nesting material was synthetic rope, which appears to be used preferentially. On average 62.85 ± 26.84 (range minima 33-109) birds were entangled each year, totalling 525 individuals over eight years, the majority of which were nestlings. Although mortality rates are high, they are unlikely to have population-level effects. The use of synthetic fibres as nesting material is a common strategy among seabirds, but the impacts of entanglement warrants further investigation.  相似文献   
97.
Hydrogen gas produced in the subsurface from the hydration of mafic rocks is known to be a major energy source for chemolithotrophic life in extreme environments such as hydrothermal vents. The possibility that in situ anaerobic microorganisms present in the deep subsurface are sustained by low temperature H2-generating water–rock reactions taking place around them is being investigated. Whether the growth and activity of H2-utilizing microbes directly influences aqueous geochemistry, rates of mineral dissolution, and the chemical composition of the alteration products is also being quantitatively evaluated.To explore how microorganisms are affected by water–rock reactions, and how their activity may in turn affect reaction progress, laboratory experiments have been conducted to monitor the growth of a methanogenic Archaea in the presence of H2(g) produced from low temperature water–Fe0–basalt reactions. In these systems, the conversion of Fe(II) to Fe(III) and subsequent hydrolysis of water is responsible for the production of H2(g). To characterize key components of the geochemical system, time series measurements of H2 and CH4 gas concentrations, Fe and Si aqueous concentrations, and spatially resolved synchrotron-based analyses of microscale Fe distribution and speciation were conducted. Culture experiments were compared with an abiotic control to document changes in the geochemistry both in the presence and absence of the methanogen.In the control abiotic batch experiment, H2 was continuously produced, until the headspace became saturated, while in the biotic experiments, microbial consumption of H2 for methanogenesis draws H2 down and produces CH4. Purging the headspace gas reinitiates H2 and CH4 production in abiotic and culture experiments, respectively. Mass balance analysis of the amount of CH4 produced suggests that the total H2 production in microbial experiments does not exceed the abiotic experiment. Soluble Si concentrations, while buffered to relatively constant values, were higher in culture experiments than the abiotic control.Iron(aq) concentrations appear to respond to perturbations of H2 and CH4 gas concentrations in both culture experiments and the abiotic control. A pulse of Fe preceded the rise in either H2 or CH4 production, and as the gas concentrations increased the Fe(aq) decreased. Iron-bearing mineral assemblages change with increasing reaction time and mineral assemblages vary between culture experiments and the abiotic control. These geochemical trends suggest that there are different reaction paths between the culture experiments and the abiotic control.The hydration of mafic rocks is a common geologic reaction and one that has taken place on Earth for the majority of its history and is postulated to occur on Mars. These reactions are important because of their effect on the rheology and geochemistry of the ocean crust. While most often studied at temperatures of ~250 °C, this work suggests that at lower temperatures microorganisms may have a profound effect on what has long been thought to be solely an abiotic reaction, and may produce diagnostic mineral assemblages that will be preserved in the geological record.  相似文献   
98.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   
99.
Based on the USGS slip distribution data (Finite Fault Model), the vector field of the seafloor deformation in the source of the tsunami that occurred on March 11, 2011, was calculated. The field of seafloor deformation and distribution of depths in the area of the source were used for reconstruction of the initial elevation of the water surface in the tsunami source. It was found that the contribution of horizontal deformations into the amplitude of the initial elevation, into the displaced water volume, and into the potential energy of the initial elevation is at about 20–25%. Within the framework of the linear theory of long waves, numerical simulation of evolution of the initial elevation was made. The simulation results were compared to the signals recorded by the four deep water stations DART which were the nearest to the source. It was shown that account of the horizontal deformation of the seafloor provides a more precise coincidence between the model and real data. Insignificant differences in arrival times of the model and real signals were interpreted as manifestation of phase dispersion and finite duration for the seafloor deformation to form.  相似文献   
100.
Human actions have altered the structure and function of coastal ecosystems worldwide. In many locations, the overall portfolio of goods, cultural amenities, and supporting services provided by the marine environment has deteriorated. Ecosystem-based management (EBM) offers significant promise for addressing these issues because it is a comprehensive and integrated approach designed to reconcile conflicts and trade-offs among users of marine resources. A key step in the implementation of EBM is the establishment of target reference levels, or desired states, for indicators that reflect the status of the ecosystem. This paper reviews five approaches, borrowed from a variety of disciplines, to establish target reference levels for EBM. The approaches include the use of existing reference levels, reference directions, and reference levels based on nonlinear functional relationships, baselines, or social norms. Each approach is particularly suitable for EBM because it can be used alone or in combination with others to contextualize status for a diverse suite of ecosystem goals influenced by a wide variety of human activities. Perhaps most importantly, these approaches offer a prospectus for moving forward with EBM by using readily available information, motivating existing scientific capacity, and addressing trade-offs implicit to the setting of targets. This last point is articulated via examples of how each type of reference level might be applied in Puget Sound, WA, USA, where the efforts of scientists, managers, and policy makers have aligned recently in the interest of EBM implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号