首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   17篇
  国内免费   7篇
测绘学   6篇
大气科学   39篇
地球物理   82篇
地质学   117篇
海洋学   133篇
天文学   75篇
综合类   7篇
自然地理   20篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   17篇
  2016年   21篇
  2015年   9篇
  2014年   17篇
  2013年   25篇
  2012年   11篇
  2011年   17篇
  2010年   13篇
  2009年   22篇
  2008年   24篇
  2007年   25篇
  2006年   20篇
  2005年   24篇
  2004年   27篇
  2003年   18篇
  2002年   14篇
  2001年   13篇
  2000年   14篇
  1999年   14篇
  1998年   15篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有479条查询结果,搜索用时 15 毫秒
171.
The Poboya Prospect lies along the North Northwest ‐ South Southeast Palu‐Koro Fault Zone in the central part of the West Sulawesi Arc. The geology of the area consists of the Palu Metamorphic Complex overlain by the Paleogene‐Neogene Tinombo Formation of volcanosedimentary rocks, the Celebes Molasse sediment, and Late Cenozoic granitic rocks. Petrography, scanning electron microscope with energy‐dispersive spectrometry (SEM‐EDS), electron probe microanalyzer (EPMA), and fluid inclusion microthermometry were carried out to examine vein textures, ore mineralogy, and characteristics of the ore‐forming fluid responsible for mineralization in the River Reef Zone, the Poboya Prospect. Textures of quartz‐carbonate veins in the River Reef Zone include massive micro‐comb, moss, colloform, crustiform, mosaic, feathery, flamboyant, lattice bladed, ghost bladed, parallel bladed, and saccharoidal textures representing primary growth, recrystallization, and replacement. The homogenization temperature and fluid salinity are 240–250°C and 0.3–0.7 wt% NaCl eq., respectively. Ore minerals precipitated in the early stage consist of electrum, naumannite‐aguilarite, chalcopyrite, pyrite, marcasite, sphalerite, and pyrrhotite. Apart from pyrrhotite, these ore minerals were also precipitated in the late stage along with selenopolybasite, freibergite, argyrodite, pyrargyrite, and galena. Selenium more preferably occurs as the crystallographic replacement of sulfur in naumannite‐aguilarite, argyrodite, pyrargyrite, selenopolybasite, and freibergite instead of as independent selenide minerals. The low‐sulfidation epithermal deposit in the River Reef Zone, the Poboya Prospect, illustrates the potential of the West Sulawesi Arc, particularly along the Palu‐Koro Fault Zone, to host epithermal gold mineralization.  相似文献   
172.
Elemental and isotopic abundances of lithium in chondrule constituents in the Allende CV3 meteorite were determined using secondary ion mass spectrometry. Olivines and mesostasis dominated by a feldspathic phase are depleted in Li ( and , respectively). In contrast, low-Ca pyroxenes and mesostasis dominated by a Na-rich phase are enriched in Li ( and , respectively) and the interchondrule matrix is generally enriched in Li ( on average). The Li isotopic abundance of olivine ranges from to 21. The spatial distributions of elemental and isotopic abundances of Li in olivines within individual chondrules exhibit no systematic pattern. This suggests that the distribution of Li in olivine was not disturbed during aqueous alteration or thermal metamorphism on the Allende meteorite parent body. Although mesostasis is the last crystallizing phase from a chondrule melt and is expected to be enriched in Li, in the Allende meteorite it is generally depleted in Li. We suggest that during aqueous alteration on the CV asteroid, Li in mesostasis was leached out by aqueous fluids. The Li-enriched Na-rich mesostasis was probably produced later by infiltration of Na-rich fluids. It seems likely that aqueous fluids sequestered alkali elements from the Allende-chondrite region in the CV parent asteroid, although significant amounts of Li are preserved in ferrous olivine in the interchondrule matrix.  相似文献   
173.
Sendai Bay is located on the Pacific coast of northern Japan and suffered serious damage following the 2011 off the Pacific coast of Tohoku earthquake and tsunami in March 2011. To assess the impact on the marine ecosystem, information was needed on the phytoplankton communities and their seasonal variation. However, such information was limited. Therefore, an intensive monitoring of the phytoplankton was carried out from March 2012 to April 2014. Seasonal variation of the phytoplankton community was similar at coastal and offshore stations. Total phytoplankton biomass, based on Chl a concentration, peaked in spring and then decreased to a minimum in summer, before gradually increasing during early winter and peaking again in the following spring. This seasonal pattern was consistent with previous studies conducted before the earthquake and tsunami. Also, size structure of the phytoplankton community and its four main groups was estimated from the size-fractioned samples of Chl a. Our results also showed that the spring bloom consisted of large diatoms, with their growth ceasing due to nitrogen depletion. The bloom was followed by a summer period where cyanobacteria and picoeukaryote became dominant, with high cell densities in spite of low nutrient concentrations. In addition, sporadic environmental changes, such as those following typhoons, were observed. These resulted in large increases/decreases in individual phytoplankton groups.  相似文献   
174.
Sendai Bay in northern Japan suffered serious damage from massive tsunamis generated by the 2011 off the Pacific coast of Tohoku earthquake. The physical disturbance caused by a tsunami may affect the coastal ecosystem, including the planktonic diatom community. We investigated seasonal changes in the diatom community structure at a coastal and an offshore station in Sendai Bay, from June 2011 (3 months after the tsunami) to April 2014. Diatom abundance increased at both stations during the spring. Sporadic increases were also recorded at the coastal station during the summer because of silicate input from river discharge. Seasonal succession of the diatom communities was similar at both the coastal and offshore stations. The onset of the spring bloom consisted mainly of Chaetoceros spp. when water temperatures were low. Subsequently, species such as Skeletonema costatum s.l. became dominant as salinity and nutrient concentrations decreased. Cell density decreased from summer into early winter. Leptocylindrus danicus became dominant in the summer, but was replaced by Thalassiosira cf. mala from autumn into winter. Redundancy analysis (RDA) showed that most of the variation in the diatom community could be explained by temperature, salinity, NO3 ?, NO2 ?, PO4 3?, and SiO2. In addition, the occurrence of diatom species before the tsunami showed a similar pattern to that after the tsunami, suggesting that the tsunami did not have a serious impact on the diatom community in Sendai Bay.  相似文献   
175.
Ion adsorption rare earth element (REE) deposits in southern China are the exclusive source of heavy REEs (HREEs) in the world, and this HREE‐enriched character of the deposits is inherited from the REE compositions of the underlying granitic rocks. Such HREE‐enriched rocks form from heavy fractionation of reduced granitic magmas. We explore why reduced granitic magmas are enriched in HREEs during the fractionation, based on the REE geochemistry of granitic rocks and abundance of REEs in their constituent minerals in the southwestern Japan arc of Cretaceous to Paleogene age. The compilation of the whole rock geochemistry and REE compositions of the granitic rocks of the Sanin (oxidized), Sanyo (reduced) and Ryoke (reduced) belts in the southwestern Japan arc indicates that: (i) light REEs (LREEs) decease with fractionation of the granitoids in the Sanin belt but this trend is not clear in the granitoids in the Sanyo belt and LREEs rather increase in the Ryoke granitoids; (ii) Eu decreases with fractionation in all the belts; and (iii) HREEs slightly, but steadily decrease in the Sanin belt but enrich significantly in the Sanyo and Ryoke belts with fractionation. Analytical results of REE concentrations by scanning electron microscope with energy dispersive X‐ray spectroscope and laser ablation‐inductively coupled plasma mass spectrometer in the constituent minerals in a granodiorite sample from the Sanin belt show a moderate concentration of REEs in hornblende (577 ppm) in addition to high concentrations in allanite (~20 %), britholite (~30 %), primary titanite (8922 ppm), apatite (4062 ppm), and zircon (1693 ppm). Because primary titanite and allanite are commonly present in the oxidized granitoids but not in the reduced ones, the REE depletion in the fractionated, oxidized granites is attributed to the crystallization of these minerals. In contrast, scarcity of these minerals in the reduced granitoids enriches REEs, in particular HREEs in the fractionated magmas, which finally precipitate REEs in the granites and pegmatites. Both positive, but different correlation ratios between the Nb and Dy concentrations in the granitoids of the Sanin and Sanyo‐Ryoke belts suggest that columbite–pyrochlore‐group and fergusonite‐group minerals are the major HREE host in the oxidized and reduced granites, respectively.  相似文献   
176.
In a disk with a low optical depth, dust particles drift radially inward by the Poynting-Robertson (P-R) drag rather than are blown out by stellar radiation pressure following destructive collisions. We investigate the radial distribution of icy dust composed of pure ice and refractory materials in dust-debris disks taking into account the P-R drag and ice sublimation. We find that icy dust particles form a dust ring by their pile-ups at the edge of their sublimation zone, where they sublime substantially at the temperature 100-110 K. The distance of the dust ring is 20-35 AU from the central star with its luminosity L??30L and 65(L?/100L)1/2 AU for L??30L, where L is the solar luminosity. The effective optical depth is enhanced by a factor of 2 for L??100L and more than 10 for L??100L. The optical depth of the outer icy dust disk exceeds that of the inner disk filled with refractory particles, namely, the residue of ice sublimation, which are further subjected to the P-R effect. As a result, an inner hole is formed inside the sublimation zone together with a dust ring along the outer edge of the hole.  相似文献   
177.
The Northwest Pacific Carbon Cycle Study (NOPACCS) was a program aimed at investigating the carbon cycle of the North Pacific Ocean, which can be thought of as a large reservoir of carbon dioxide. NOPACCS was also aimed at estimating the North Pacific's capacity as a carbon sink. Project design, scientific results, and data availability, and subsequent projects resulting from this project are also described in this review. Studies of the upper ocean processes focused on the latitudinal differences in the fugacity of carbon dioxide; and on the detail of plankton community structures. Intermediate water was studied in relation to the formation of North Pacific Intermediate Water and the amount of accumulated anthropogenic carbon. The sedimentation process, past carbon cycle and coral reefs were also studied during the project. A preliminary, overall view of the carbon cycle of the North Pacific was drawn from the results of the project and compared to global values.  相似文献   
178.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   
179.
Antidunes are fluvial bedforms that form in rivers with supercritical flows. The water surface over antidunes is strongly in phase with the bed surface, and the water surface is amplified to produce large surface waves. Many experimental studies have addressed antidunes; however, the shapes of three-dimensional antidunes in a wide channel with alternate bars have not yet been appropriately understood. In this study, we experimentally investigated the streamwise and transverse length scales of antidunes under conditions with a large width–depth ratio. Our experimental results provide evidence for the coevolution of antidunes and free alternate bars, and show for the first time that the development of free bars greatly alters the three-dimensional shape of water surface waves over antidunes. In the absence of free bars in a wide channel, multiple longitudinal wave trains form, and the number of wave trains counted in the transverse direction increases with increases in the width–depth ratio. However, the presence of free bars affects the local flow characteristics, resulting in a decrease of the number of wave trains in the transverse direction. Therefore, we propose a simple model for predicting the reduction in the number of wave trains by combining two previous theories for antidunes and free bars. Results obtained by the model were found to largely agree with experimental observations. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
180.
Climatological water-mass structures were identified in the Arctic Ocean using the geochemical dataset in the Hydrochemical Atlas of the Arctic Ocean (HAAC) as well as data on a geochemically conserved parameter, PO4*, based on phosphate and dissolved oxygen. In the upper ocean above a depth of 500 m, the HAAC was found to reliably depict the boundary between Pacific-Origin Water (P-Water) and Atlantic-Origin Water (A-Water), which is aligned 135°E–45°W near the surface but rotates counterclockwise with depth. Thus, the Arctic and Atlantic oceans exchange high-silicate P-Water and low-silicate A-Water. The PO4* field in the lower ocean below a depth of 1500 m was analyzed statistically, and the results indicated that the Eurasian Basin receives low-PO4* Nordic Seas Deep Water, which flows along the bottom from the Greenland Sea. The routes from the upper ocean to the lower ocean were determined. Only the southern portion of the Canada Basin, which receives water from the Chukchi and Beaufort Seas, has high PO4* levels; the rest of the Amerasian Basin receives low-PO4* water from the Laptev Sea and/or the Barents Sea. The Eurasian Basin receives moderate levels of PO4* from the Fram Strait and from the intermediate layer. The intermediate-layer water gradually travels up from the lower ocean and returns to the Atlantic, entraining the subsurface portion. It is likely that high-PO4* water occasionally flows down from the upper ocean along Greenland, making the Eurasian Basin heterogeneous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号