首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   17篇
  国内免费   4篇
测绘学   3篇
大气科学   20篇
地球物理   128篇
地质学   112篇
海洋学   86篇
天文学   119篇
综合类   2篇
自然地理   19篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   13篇
  2018年   2篇
  2017年   15篇
  2016年   10篇
  2015年   10篇
  2014年   25篇
  2013年   16篇
  2012年   18篇
  2011年   19篇
  2010年   23篇
  2009年   26篇
  2008年   25篇
  2007年   23篇
  2006年   28篇
  2005年   16篇
  2004年   16篇
  2003年   8篇
  2002年   20篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   10篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   10篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1978年   2篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   6篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有489条查询结果,搜索用时 31 毫秒
21.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
22.
Abstract. Rare earth, major and trace element geochemistry is reported for the Kunimiyama stratiform ferromanganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The deposit immediately overlies greenstones of mid-ocean ridge basalt (MORB) origin and underlies red chert. The ferromanganese ores exhibit remarkable enrichments in Fe, Mn, P, V, Co, Ni, Zn, Y and rare earth elements (excepting Ce) relative to continental crustal abundance. These enriched elements/ Fe ratios and Post-Archean Average Australian Shale-normalized REE patterns of the ferromanganese ores are generally analogous to those of modern hydrothermal ferromanganese plume fall-out precipitates deposited on MOR flanks. However in more detail, Mn and Ti enrichments in the ferromanganese ores are more striking than the modern counterpart, suggesting a significant contribution of hydrogenetic component in the Kunimiyama ores. Our results are consistent with the interpretation that the Kunimiyama ores were umber deposits that primarily formed by hydrothermal plume fall-out precipitation in the Panthalassa Ocean during the Early Permian and then accreted onto the proto-Japanese island arc during the Middle Jurassic. The presence of strong negative Ce anomaly in the Kunimiyama ores may indicate that the Early Permian Panthalassa seawater had a more striking negative Ce anomaly due to a more oxidizing oceanic condition than today.  相似文献   
23.
24.
Aquatic Geochemistry - Spring waters with high-pCO2 content are widely distributed in the Sikhote-Alin region in Russia. Mukhen spa is one such spring located in the northern Sikhote-Alin region....  相似文献   
25.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   
26.
Two inverted echo sounders were maintained on coastal and offshore sides of the Kuroshio south of Japan from October 1993 to July 2004. Applying the gravest empirical mode method, we obtained a time series of geostrophic transport. Estimated transports generally agree well with geostrophic transports estimated from hydrography. Their agreement with the hydrographic transports is better than that of transports estimated from satellite altimetry data. The geostrophic transport is expressed as the surface transport per unit depth multiplied by the equivalent depth. The geostrophic transport varies mostly with the surface transport and fractionally with the equivalent depth. Seasonal variation of the geostrophic transport has a minimum in March and a maximum in September, with a range of about one fifth of the total transport.  相似文献   
27.
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India.  相似文献   
28.
In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different \(y\) positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At \(y \sim2.1R_{E}\) (\(R_{E}\) is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At \(y \sim3.0R_{E}\), the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.  相似文献   
29.
A steady quasi-geostrophic 2.5-layer model, forced by both Ekman pumping and a mass source/sink situated at the western boundary has been constructed to investigate the effect of diapycnal transport due to convection in the Okhotsk Sea and tidal mixing at the Kuril Straits on the intermediate layer in the North Pacific. The model illustrates a combined effect of the wind-driven and mass-driven circulations. First, net mass input induces a “barotropic” mode inter-gyre flow along the western boundary through the dynamical influence of Kelvin waves. This flow creates characteristic curves (geostrophic contours) that facilitate inter-gyre communication through the western boundary layer from the location of the mass source to the subtropical gyre. Due to the effect of wind-driven circulation, the offshore part turns eastward into the interior, encircles the outer rim of the region (which would otherwise be the pool region in the absence of mass input), and then encounters the western boundary. Eventually, the water fed into the lower layer flows mostly along this path and later flows away to the equatorial region. Conversely, in the upper layer, water is fed from the equator to the subtropics, and to the subpolar interior region through the western boundary current. The water then circulates along the outer rim and is absorbed into the mass sink. The model is controlled mainly by three nondimensional parameters: (1) the ratio of net mass input rate to the maximum Sverdrup transport (Q/T Sv max ), which affects the inter-gyre communication by altering the paths of geostrophic contours, (2) the ratio of a mass input rate into the lower layer to that in total (Q 2/Q), which controls the vertical structure of the inter-gyre flow, and (3) the measure of the wind forcing effect relative to the β effect, which determines the horizontal extent of the area influenced by the mass input. The other parameter regimes with respect to Q/T Sv max and Q 2/Q are also presented.  相似文献   
30.
Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light‐colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock‐darkened LL5 material in which the darkening is caused by melt and metal‐troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel‐101, and the impact melt breccias (Chel‐102 and Chel‐103) were prepared and analyzed for Rb‐Sr, Sm‐Nd, and Ar‐Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号