首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   8篇
地质学   2篇
海洋学   3篇
天文学   1篇
  2021年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The 1999 Kocaeli earthquake brought serious damage to downtown of Adapazari. To study why strong motions were generated at the town, a bedrock structure was investigated on the basis of Bouguer gravity anomaly, and SPAC and H/V analyses of microseisms. It was revealed that, the basin consists of three narrow depressions of bedrock with very steep edges, extending in E–W or NE–SW directions along the North Anatolia faults, and the depth to bedrock reaches 1000 m or more. Downtown of Adapazari is located 1–2 km apart from the basin-edge. It is considered that, the specific configuration of bedrock amplifies ground motions at the downtown area by focusing of seismic waves and/or interference between incident S-waves and surface-waves secondarily generated at the basin-edge. Studying 3D bedrock structure is an urgent issue for microzoning an urban area in a sedimentary basin.  相似文献   
2.
Aquatic Geochemistry - Spring waters with high-pCO2 content are widely distributed in the Sikhote-Alin region in Russia. Mukhen spa is one such spring located in the northern Sikhote-Alin region....  相似文献   
3.
The strong ground motion prediction method ??Recipe?? was published by the Headquarters for Earthquake Research Promotion (HERP) of Japan. HERP has applied this method to prepare shaking maps for scenario earthquakes in specific active faults. Recently, Recipe was updated following its verification by simulations of strong ground motions associated with the Mw?=?6.6 off-shore earthquake west of Fukuoka prefecture in 2005, which occurred in the northwest part of the Kego fault zone located in northern Kyushu, Japan. One of the prominent changes in the upgraded version of Recipe is the inclusion of a procedure to evaluate seismic intensities on the ground surface from waveforms of S-wave velocity of 400?m/s on the engineering bedrock. By applying the upgraded version of Recipe, we have made shaking-maps for earthquakes in the southeast part of the Kego fault zone, which is located directly below the mega-city of Fukuoka. We assume four source models for scenario earthquakes; the locations of the asperities and the hypocenters vary between the models. The results show that in all cases, disastrous seismic intensities can strike a wide area of Fukuoka city. Differences in the distributions of seismic intensities among the four cases can be clearly observed in the area located on the extension of the source fault. Furthermore, we construct a velocity-layer structure model on the engineering bedrock for the central area of Fukuoka city. We assess not only the distribution of seismic intensities but also waveforms on the ground by using an equivalent linear method for the central area of Fukuoka city.  相似文献   
4.
The variation of ground motions at specific stations from events in six narrow areas was inspected by using K-NET and KiK-net records. A source-area factor for individual observation stations was calculated by averaging ratios between observed values for horizontal peak acceleration and velocity, as well as acceleration response spectra for 5% damping, and predicted values using a ground-motion model (usually known as an attenuation relation) by Kanno et al. (Bull Seismol Soc Am, 96:879–897, 2006). Standard deviations between observed and predicted amplitudes after the correction factor are less than 0.2 on the logarithmic scale and decrease down to around 0.15 in the short-period range. Intra-event standard deviation clearly increases with decreasing distance due to differing paths around near source area. Standard deviations may increase with amplitude or decrease with magnitude; however, both amplitude and magnitude of the data are strongly correlated with distance. The standard deviation calculated in this study is obviously much smaller than that of the original ground-motion model, as epistemic uncertainties are minimized by grouping ground motions at specific stations. This result indicates that the accuracy of strong ground motion prediction could be improved if ground-motion models for specified region are determined individually. For this to be possible, it is necessary to have dense strong-motion networks in high-seismicity regions, such as K-NET and KiK-net.  相似文献   
5.
Current Nature of the Kuroshio in the Vicinity of the Kii Peninsula   总被引:1,自引:0,他引:1  
The Kuroshio flows very close to Cape Shionomisaki when it takes a straight path. The detailed observations of the Kuroshio were made both on board the R/V Seisui-maru of Mie University and on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station on June 11–14, 1996. It was confirmed that the current zone of the Kuroshio touches the coast and bottom slope just off Cape Shionomiaki, and that the coastal water to the east of the cape was completely separated from that to the west. The relatively high sea level difference between Kushimoto and Uragami could be caused by this separation of the coastal waters when the Kuroshio takes a straight path. This flow is rather curious, as the geostrophic flow, which has a barotropic nature and touches the bottom, would be constrained to follow bottom contours due to the vorticity conservation law. The reason why the Kuroshio leaves the bottom slope to the east of Cape Shionomisaki is attributed to the high curvature of the bottom contours there: if the current were to follow the contours, the centrifugal term in the equation of motion would become large and comparablee to the Coriolis (or pressure gradient) term, and the geostrophic balance would be destroyed. This creates a current-shadow zone just to the east of the cape. As the reason why the current zone of the Kuroshio intrudes into the coastal region to the west of the cape, it is suggested that the Kii Bifurcation Current off the southwest coast of the Kii Peninsula, which is usually found when the Kuroshio takes the straight path, has the effect of drawing the Kuroshio water into the coastal region. The sea level difference between Kushimoto and Uragami is often used to monitor the flow pattern of the Kuroshio near the Kii Peninsula. It should be noted that Uragami is located in the current shadow zone, while Kushimoto lies in the region where the offshore Kuroshio water intrudes into the coastal region. The resulting large sea level difference indicates that the Kuroshio is flowing along the straight path.  相似文献   
6.
Two distinctive magmatic fluids were recognized in the Tatun volcanic group (TVG), Taiwan. One is a relatively reduced fluid represented by the fumarolic gases at Hsiao-you-ken (HYK) geothermal field. Another is an oxidized fluid containing high concentrations of HCl represented by the fumarolic gases at Da-you-ken (DYK). An intermediate gas was recognized at Gung-tze-ping (GTP) and She-hung-ping (SHP). The fumarolic gases at HYK and GTP possess the features of so-called primary steam generated on mixing of magmatic gas and meteoric groundwater. The fumarolic gases at DYK are a simple mixture between magmatic gas and water vapor of meteoric origin. The CO2/H2O molar ratio of the magmatic component in the fumarolic gases at DYK was estimated to be 0.018, meanwhile it was estimated to be 0.027 for the fumarolic gases at HYK and GTP, suggesting the magma beneath DYK is depleted in volatiles relative to the magma beneath HYK and GTP. The estimated CO2/H2O ratio for the magmatic component is comparable to that of some active volcanoes in Japan, suggesting the enrichment of volatiles in the magmas beneath TVG.  相似文献   
7.
8.
9.
An effective method for the seismic retrofitting of the sidewalls of cut‐and‐cover tunnels has not yet been established. Thus, a new method of seismic retrofitting for cut‐and‐cover tunnels, called the ‘polymer isolation method’, is developed here. In this method, thin walls made of polymer materials, called ‘isolation walls’, are inserted between the ground and the sidewalls of a tunnel. We demonstrate the effectiveness of the proposed method in reducing the seismic response of tunnels by using some numerical simulations. It is found that the proposed method depends on the thickness of the soil cover over the tunnel and the ratio of the stiffness between the soil and the structure. Furthermore, a simple chart is proposed for convenience to represent the applicability of the polymer isolation method to the design of seismic retrofits for cut‐and‐cover tunnels. Although this particular chart has been obtained through a limited case, some other typical cases in which the chart can also be implemented for special conditions are addressed, and the applicability and the limitations of this chart are suggested for possible conditions of the ground and of tunnel structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
The paper describes the present status of Japan's coastal fisheries resource and the anthropogenic threats to that resource. The increasing industrialization and urbanization of the Japanese coastal fringe has created threats to the important fish and shellfish resource. Legislative mechanisms, such as quality standards, together with an increasing mariculture are used to ensure the sustainable development of the coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号