首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
大气科学   4篇
地球物理   15篇
地质学   24篇
海洋学   2篇
天文学   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1995年   1篇
  1982年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
11.
Precise estimation of unsaturated hydraulic properties of porous media is indispensable in various study areas, such as analyzing the moisture flow, the drying process occurring from the surface, and the pollutant migration beneath the ground surface. Although many empirical/theoretical models describing the unsaturated hydraulic properties have been proposed by several previous researchers, the best model for the different types of soil/rock may not be identical. Thus, the model selection process and the estimation technique of the parameters included in the models should be developed. In the present study, the inverse technique based on the transient evaporation change was investigated to select the model and estimate the model parameters. The experimental work was based on a relatively low permeable soft rock and a relatively high permeable sandy soil (Toyoura standard sand). Experimental equipment was developed to precisely measure the evaporation rate for the high permeable sandy soil. The Genetic Algorithm (GA) was adopted in the inverse technique as an optimization tool. In order to simplify the problem, only the drying process from the saturated condition was considered. It was established that the information concerning the transient evaporation change could be used for the model selection and parameter estimation. Further, the saturation distribution could be used for the selection of the models. The present study provides important information for the development of the model selection process.  相似文献   
12.
In this study we analyzed the chemical composition of hydrothermally altered dacite and basalt from the Kuroko mining area, northeastern Honshu, Japan, by REE (rare earth element). Features of rare earth element analyses include: (1) altered footwall dacite exhibits a negative Eu anomaly compared with fresh dacite, suggesting preferential removal of Eu2+ from the altered dacite via hydrothermal solutions, (2) altered hangingwall dacite and basalt and dacite and basalt adjacent to ore deposits exhibit positive Eu anomalies compared with fresh dacite and basalt, suggesting addition of Eu2+ from hydrothermal solutions, (3) LREE ratio (∑LREE/∑REE) from altered dacite of chlorite–sericite zone and K-feldspar zone show a negative relationship with δ18O, and La/Sm ratios show a positive correlation with the K2O index. These trends indicate the addition of light rare earth elements such as La to the altered dacite from hydrothermal solution and/or leaching of heavy rare earth elements such as Sm and Yb, (4) Principal component analysis (PCA) indicates that light rare earth elements enrichment is related to the formation of sericite zone near the Kuroko deposits but not to the formations of chlorite and K-feldspar zones, and (5) The correlations among REE features (LREE ratio, MREE ratio, HREE ratio, Eu/Eu?), δ18O and K2O index are not found for montmorillonite zone, mixed layer clay mineral zone and mordenite zone. Therefore, it is inferred that sericite, chlorite and K-feldspar alterations are related to the Kuroko and vein-type mineralization, but montmorillonite and mordenite alterations are not related to the mineralizations, and probably they formed at the post-mineralization stage.  相似文献   
13.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   
14.
The Middle–Lower Yangtze River Valley metallogenic belt (YRB), situated along the northern margin of the Yangtze craton, is characterized by porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits in the areas of uplift and magnetite–apatite deposits in Cretaceous fault basins. Following detailed field investigations and a review of published data, we recognize two episodes of magmatism and mineralization in the YRB: 1) 156–137 Ma high-K calc-alkaline granitoids associated with 148–135 Ma porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits and 2) 135–123 Ma shoshonitic series, associated with 134.9–122.9 Ma magnetite–apatite deposits. A-type granitoids and associated alkaline volcanic have a small age range from 126.5 to 124.8 Ma and are temporally, spatially and genetically associated with the second episode. The geodynamic history of the YRB did not experience the Paleozoic to Mesozoic lithospheric thickening that took place in the North China craton. This process is inferred to be linked to partial melting of the delaminated lower crust at high pressures, resulting in the development of C-type adakitic rocks. The petrochemical and Sr/Nd isotopic data show that both the shoshonitic series and A-type granitoids are quite different from adakites, with only some of the K-calc-alkaline granitoids having adakitic signatures. Previous ore genesis models were established based on an assumed relationship with adakites and a continuous tectono-thermal evolution from 150 to 100 Ma.All data obtained for the Middle–Lower Yangtze River region consistently show that the Tan–Lu regional strike-slip fault zone, initiated at 233 ± 6 to 225 ± 6 Ma from the collision between the North China and Yangtze cratons and was reactivated at ca. 160 Ma. The Tan–Lu fault was caused by the oblique subduction of the Izanagi plate, which along the YRB the low-angle subducted slab and the overlying crust was disrupted or broken due to the disharmonious movement of the two blocks. The high-K calc-alkaline granitoids magmas were derived from melting of the subducted slab, with some input of crustal material. These magmas were emplaced at the intersections between NE- and EW-trending faults and formed porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits between 156 and 137 Ma. After 135 Ma the subducted plate changed its direction of motion to northeast, now running parallel to the Eurasian continental margin, and leading to large-scale continental extension. The shoshonitic series and subsequent A-type granitoids magmatism and the development of magnetite–apatite ores in the YRB, took place in both fault basins and NE-trending rifts between 135 and 124 Ma.  相似文献   
15.
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the “memory” of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.  相似文献   
16.
Blended acquisition along with efficient spatial sampling is capable of providing high-quality seismic data in a cost-effective and productive manner. While deblending and data reconstruction conventionally accompany this way of data acquisition, the recorded data can be processed directly to estimate subsurface properties. We establish a workflow to design survey parameters that account for the source blending as well as the spatial sampling of sources and detectors. The proposed method involves an iterative scheme to derive the survey design leading to optimum reflectivity and velocity estimation via joint migration inversion. In the workflow, we extend the standard implementation of joint migration inversion to cope with the data acquired in a blended fashion along with irregular detector and source geometries. This makes a direct estimation of reflectivity and velocity models feasible without the need of deblending or data reconstruction. During the iterations, the errors in reflectivity and velocity estimates are used to update the survey parameters by integrating a genetic algorithm and a convolutional neural network. Bio-inspired operators enable the simultaneous update of the blending and sampling operators. To relate the choice of survey parameters to the performance of joint migration inversion, we utilize a convolutional neural network. The applied network architecture discards suboptimal solutions among newly generated ones. Conversely, it carries optimal ones to the subsequent step, which improves the efficiency of the proposed approach. The resultant acquisition scenario yields a notable enhancement in both reflectivity and velocity estimation attributable to the choice of survey parameters.  相似文献   
17.
Three‐dimensional seismic survey design should provide an acquisition geometry that enables imaging and amplitude‐versus‐offset applications of target reflectors with sufficient data quality under given economical and operational constraints. However, in land or shallow‐water environments, surface waves are often dominant in the seismic data. The effectiveness of surface‐wave separation or attenuation significantly affects the quality of the final result. Therefore, the need for surface‐wave attenuation imposes additional constraints on the acquisition geometry. Recently, we have proposed a method for surface‐wave attenuation that can better deal with aliased seismic data than classic methods such as slowness/velocity‐based filtering. Here, we investigate how surface‐wave attenuation affects the selection of survey parameters and the resulting data quality. To quantify the latter, we introduce a measure that represents the estimated signal‐to‐noise ratio between the desired subsurface signal and the surface waves that are deemed to be noise. In a case study, we applied surface‐wave attenuation and signal‐to‐noise ratio estimation to several data sets with different survey parameters. The spatial sampling intervals of the basic subset are the survey parameters that affect the performance of surface‐wave attenuation methods the most. Finer spatial sampling will reduce aliasing and make surface‐wave attenuation easier, resulting in better data quality until no further improvement is obtained. We observed this behaviour as a main trend that levels off at increasingly denser sampling. With our method, this trend curve lies at a considerably higher signal‐to‐noise ratio than with a classic filtering method. This means that we can obtain a much better data quality for given survey effort or the same data quality as with a conventional method at a lower cost.  相似文献   
18.
The Huai Kham On gold deposit is located in the central part of the Sukhothai Fold Belt, northern Thailand. The Sukhothai Fold Belt represents an accretionary complex formed by subduction and collision between the Indochina and Sibumasu Terranes. There are many small gold deposits in the Sukhothai Fold Belt; however, the styles and formation environments of those gold deposits are not clear. The geology of the Huai Kham On deposit consists of volcanic and volcanosedimentary rocks, limestone, and low‐grade metamorphic rocks of Carboniferous to Triassic age. Gold‐bearing quartz veins are hosted by volcanic and volcanosedimentary rocks. The quartz veins can be divided into four stages. The mineral assemblage of the gold‐bearing quartz veins of Stages I and II comprises quartz, calcite, illite, pyrite, native gold, galena, chalcopyrite, and sphalerite. Quartz veins of Stage III consist of microcrystalline quartz, dolomite, calcite, pyrite, native gold, and chalcopyrite. Veins of Stage IV consist of calcite, dolomite, chlorite, and quartz. Fluid inclusions in quartz veins are classified into liquid‐rich two‐phase (Types IA and IB), carbonic‐aqueous (Type II), and carbonic (Type III) fluid inclusions. The homogenization temperatures of Types IA and II fluid inclusions that are related to the gold‐bearing quartz veins from Stages I to III ranged from 240° to 280°C. The δ18O values of quartz veins of Stages I to III range from +12.9 to +13.4‰, suggesting the presence of a homogeneous hydrothermal solution without temperature variation such as a decrease of temperature during the formation of gold‐bearing quartz veins from Stages I to III in the Huai Kham On gold deposit. Based on the calculated formation temperature of 280°C, the δ18O values of the hydrothermal solution that formed the gold‐bearing quartz veins range from +3.2 to +3.7‰, which falls into the range of metamorphic waters. The gold‐bearing quartz veins of the Huai Kham On deposit are interpreted to be the products of metamorphic water.  相似文献   
19.
20.
A broad area densely covered by ferromanganese nodules was recently discovered around Minamitorishima (Marcus) Island, representing a high-potential metal resource, particularly for Co, Ni, Mo, and W. We studied 16 nodule samples from nodule fields around Minamitorishima Island. To define the fine-scale chemostratigraphy of the nodules, polished cross-sections of the samples were analyzed by microfocus X-ray fluorescence. Our results show that a general pattern of compositional variation was common throughout the growth history of the nodules in all the regions we studied. Chemical mapping clarified changes in the chemical signature and proportion of five lithological components throughout the growth history: Mn represented columnar δ-MnO2; Fe represented layered amorphous FeOOH*xH2O; Ti represented TiO2*2H2O intergrown with an amorphous FeOOH phase; P, Ca and Y represented particles of biogenic calcium phosphate; and Si, Al, K, Cu, and Ni represented pelagic sediment infills. We proposed a method for a creating a multi-dimensional compositional map of the fine-scale chemostratigraphy observed in the ferromanganese oxide layers on the basis of merging the mapped Mn, Fe, Ti, P, Si and Cu intensities. Multi-dimensional compositional mapping of the sampled nodules from the western North Pacific revealed two fundamental findings: (1) previously recognized first-order Fe–Mn layers, L0, L1, and L2, were further divided into two, three, and four sublayers, respectively, and (2) a delayed supply of material to be nuclei of nodule or a growth hiatus of Fe–Mn layer(s), leading to missing sublayers in the layers L0 and L2, regulated the nodule size. In contrast, layer L1, which does not have any missing sublayers, was commonly observed in the samples for this study and has been reported in studies of other regions in the western Pacific. We propose, therefore, that the layer L1 is a key facies for examining chemostratigraphic correlations with other areas of seafloor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号