首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   6篇
  国内免费   1篇
大气科学   8篇
地球物理   29篇
地质学   19篇
海洋学   25篇
天文学   10篇
自然地理   3篇
  2021年   6篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   7篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1972年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
71.
This study analyzed 267 landslide landforms (LLs) in the Kumamoto area of Japan from the database of about 0.4 million LLs for the whole of Japan identified from aerial photos by the National Research Institute for Earth Science and Disaster Resilience of Japan (NIED). Each LL in the inventory is composed of a scarp and a moving mass. Since landslides are prone to reactivation, it is important to evaluate the sliding-recurrence susceptibility of LLs. One possible approach to evaluate the susceptibility of LLs is slope stability analysis. A previous study found a good correlation (R 2 = 0.99) between the safety factor (F s ) and slope angle (α) of F s  = 17.3α ?0.843. We applied the equation to the analysis of F s for 267 LLs in the area affected by the 2016 Kumamoto earthquake (M j  = 7.3). The F s was calculated for the following three cases of failure: scarps only, moving mass only, and scarps and moving mass together. Verification with the 2016 Kumamoto earthquake event shows that the most appropriate method for the evaluation of LLs is to consider the failure of scarps and moving mass together. In addition, by analyzing the relationship between the factors of slope of entire landslide and slope of scarp for LLs and comparing the results with the Aso-ohashi landslide, the largest landslide caused by the 2016 Kumamoto earthquake, we also found that morphometric analysis of LLs is useful for forecasting the travel distance of future landslides.  相似文献   
72.
The 1985 Michoacan earthquake (M=8·1) caused very severe damage to mid-rise buildings in the lakebed zone of Mexico City, which is approximately 400 km from the epicentre in the Pacific Ocean. In the present study, we perform a three-dimensional (3-D) non-linear soil–building interaction analysis for several types of low- to high-rise buildings during the hypothetical Guerrero earthquake, and try to understand the real cause of heavy damage to mid-rise buildings in the lakebed zone during the 1985 Michoacan earthquake. We make a reasonable estimation of the input earthquake motions and the local site effects. The non-linear soil-building interaction analysis explains the damage pattern observed during the 1985 earthquake, although other analyses do not. We realize that all the factors from the earthquake source to the building superstructure must be taken into account adequately. © 1998 John Wiley & Sons, Ltd.  相似文献   
73.
A larch forest in eastern Siberia was characterized by the presence of two distinct storeys, the overstorey with a small leaf area index (LAI) and a dense understorey with a relatively large LAI. To understand the roles of the overstorey and understorey in forest–atmosphere water exchange, canopy conductance (Gc), a critical parameter used in determining the energy and mass exchange, was calculated on the basis of latent heat flux above the overstorey and understorey, measured separately. Results showed that Gc for the overstorey (Gco) and understorey (Gcu) experienced different seasonal fluctuations. Gco was smaller than Gcu during periods of leaf expansion and leaf fall and showed an increasing trend until 1 month after the onset of leaf expansion. In contrast, a sharp decrease in Gco was observed immediately before onset of leaf fall. Furthermore, Gco was slightly larger than Gcu during the fully foliated period. A simple model using solar radiation and vapour pressure deficit (D) as inputs successfully reproduced the Gc in fully foliated periods with acceptable accuracy. Furthermore, both the understorey and overstorey in this study have a large reference Gc (Gc at D = 1 KPa) than their counterparts of other boreal forests and would not be able to sustain a constant leaf–soil water potential difference as D increases. We speculated that this confers the forest with an advantage allowing it to be able to sustain carbon assimilation during large D days and thus provides for the survival of the ecosystem during the short growing season at this site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
74.
River plumes have important effects on marine ecosystems. Variation in the extent and dispersal of river plumes is often associated with river discharge, wind characteristics and ocean circulation. The objectives of this study were to identify the Tokachi River plume by satellite, determine its relationship with river discharge and clarify its temporal and spatial dynamics. SeaWiFS multispectral satellite data (normalized water-leaving radiance: nLw) with 1.1 km spatial resolution were used to determine the spatial and temporal variability of the plume during 1998–2002. Supervised maximum likelihood classification using six channels of nLw at 412, 443, 490, 510, 555 and 670 nm with each band's spectral signature statistic was used to define classes of surface water and to estimate the plume area. Supervised maximum likelihood classification separated three to four classes of coastal water based on optical characteristics as a result of wind stress events. The satellite-observed plume area was correlated with the amount of river discharge from April to October. The plume distribution patterns were influenced by wind direction and magnitude, the occurrences of a near-shore eddy field and surface currents. Empirical orthogonal function (EOF) was used to express the spatial and temporal variability of the plume using anomalies of nLw(555) monthly averaged images. The first mode (44% of variance) showed the turbid plume distribution resulting from re-suspension by strong wind mixing along the coast during winter. This mode also showed the plume was distributed along-shelf direction in spring to early autumn. The second mode (17% of variance) showed spring pattern across-shelf direction. EOF analysis also explained the interannual variability of the plume signature, which might have been affected by the flow of the Oyashio Current and the occurrence of a near-shore eddy field.  相似文献   
75.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
76.
The spatial relationship between topography and rock uplift patterns in asymmetric mountain ranges was investigated using a stream erosion model in which the asymmetric rock uplift was given and erosion rates were proportional to the m-th power of the drainage area and the n-th power of the channel gradient. The model conditions were simple, and thus the effects of horizontal rock movement, diffusional processes, and erosion thresholds were neglected, and spatially uniform precipitation, lithology, and vegetation were assumed. In asymmetric mountain ranges, under realistic exponent conditions (m < n) and the above assumptions, the surface erosion rate is faster on the steeper side and slower on the gentler side. The topographic axis migrates away from the rock uplift axis toward the center of the mountain range owing to the contrast in erosion rates. This migration continues until the erosion is balanced with rock uplift. In a dynamic steady state, the topographic pattern is independent of the rock uplift rate as indicated by an analytical solution, and is prescribed by the rock uplift pattern and the exponents m and n. As the asymmetry of the rock uplift pattern increases, the topographic axis migrates a greater distance. The location of the topographic axis is related to the location of the rock uplift axis by a simple logarithmic function, for a wide range of m and n. The fit of the numerical results and the logarithmic function is particularly good when m = 0.5 and n = 1.0. If the rock uplift pattern in asymmetric mountain ranges is known, the value of n − 5m/4 can be constrained based on the logarithmic relation, assuming a dynamic steady state. On the other hand, if the value of n − 5m/4 is known in an asymmetric mountain range, the rock uplift pattern can be estimated directly from the topography. This relation was applied to the Suzuka Range in central Japan, and the value of n − 5m/4 was estimated for an assumed reverse fault motion.  相似文献   
77.
The solid planets assembled 4.57 Gyr ago during a period of less than 100 Myr, but the bulk of the impact craters we see on the inner planets formed much later, in a narrow time interval between 3.8 and 3.9 Gyr ago, during the so-called late heavy bombardment (LHB). It is not certain what caused the LHB, and it has not been well known whether the impactors were comets or asteroids, but our present study lend support to the idea that it was comets. Due to the Earth’s higher gravity, the impactors will have hit the Earth with ∼twice the energy density that they hit the Moon, and the bombardment will have continued on Earth longer than on the Moon. All solid surface of the Earth will have been completely covered with craters by the end of the LHB.However, almost nothing of the Earth’s crust from even the end of this epoch, is preserved today. One of the very few remnants, though, is exposed as the Isua greenstone belt (IGB) and nearby areas in Western Greenland. During a field expedition to Isua, we sampled three types of metasedimentary rocks, deposited ∼3.8 billion years ago, that contain information about the sedimentary river load from larger areas of surrounding land surfaces (mica-schist and turbidites) and of the contemporaneous seawater (BIF). Our samples show evidence of the LHB impacts that took place on Earth, by an average of a seven times enrichment (150 ppt) in iridium compared to present-day ocean crust (20 ppt). The clastic sediments show slightly higher enrichment than the chemical sediments, which may be due to contamination from admixtures of mafic (proto-crustal) sources.We show that this enrichment is in agreement with the lunar cratering rate and a corresponding extraterrestrial LHB contribution to the Earth’s Hadean-Eoarchean crust, provided the bulk of the influx was cometary (i.e., of high velocity and low in CI abundance), but not if the impactors were meteorites (i.e. had velocities and abundances similar to present-day Earth-crossing asteroids). Our study is a first direct indication of the nature of the LHB impactors, and the first to find an agreement between the LHB lunar cratering rate and the Earth’s early geochemical record (and the corresponding lunar record). The LHB comets that delivered the iridium we see at Isua will at the same time have delivered the equivalent of a ∼1 km deep ocean, and we explain why one should expect a cometary ocean to become roughly the size of the Earth’s present-day ocean, not only in terms of depth but also in terms of the surface area it covers. The total impacting mass on the Earth during the LHB will have been ∼1000 tons/m2.  相似文献   
78.
Monthly averaged total volume transport of the Indonesian throughflow (ITF) estimated by 14 global ocean data assimilation (ODA) products that are decade to multi-decade long are compared among themselves and with observations from the INSTANT Program (2004–2006). The main goals of the comparisons are to examine the consistency and evaluate the skill of different ODA products in simulating ITF transport. The ensemble averaged, time-mean value of ODA estimates is 13.6 Sv (1 Sv = 106 m3/s) for the common 1993–2001 period and 13.9 Sv for the 2004–2006 INSTANT Program period. These values are close to the 15-Sv estimate derived from INSTANT observations. All but one ODA time-mean estimate fall within the range of uncertainty of the INSTANT estimate. In terms of temporal variability, the scatter among different ODA estimates averaged over time is 1.7 Sv, which is substantially smaller than the magnitude of the temporal variability simulated by the ODA systems. Therefore, the overall “signal-to-noise” ratio for the ensemble estimates is larger than one. The best consistency among the products occurs on seasonal-to-interannual time scales, with generally stronger (weaker) ITF during boreal summer (winter) and during La Nina (El Nino) events. The scatter among different products for seasonal-to-interannual time scales is approximately 1 Sv. Despite the good consistency, systematic difference is found between most ODA products and the INSTANT observations. All but the highest-resolution (18 km) ODA product show a dominant annual cycle while the INSTANT estimate and the 18-km product exhibit a strong semi-annual signal. The coarse resolution is an important factor that limits the level of agreement between ODA and INSTANT estimates. Decadal signals with periods of 10–15 years are seen. The most conspicuous and consistent decadal change is a relatively sharp increase in ITF transport during 1993–2000 associated with the strengthening tropical Pacific trade wind. Most products do not show a weakening ITF after the mid-1970s’ associated with the weakened Pacific trade wind. The scatter of ODA estimates is smaller after than before 1980, reflecting the impact of the enhanced observations after the 1980s. To assess the representativeness of using the average over a three-year period (e.g., the span of the INSTANT Program) to describe longer-term mean, we investigate the temporal variations of the three-year low-pass ODA estimates. The average variation is about 3.6 Sv, which is largely due to the increase of ITF transport from 1993 to 2000. However, the three-year average during the 2004–2006 INSTANT Program period is within 0.5 Sv of the long-term mean for the past few decades.  相似文献   
79.
Recent studies have suggested the importance of the bedrock groundwater (BG) contribution in storm runoff in headwater catchments. However, few such studies have been conducted, and the study of different types of bedrock conditions is still ongoing. The role of BG in storm runoff is still poorly understood, particularly in headwater catchments underlain by relatively deep fractured bedrock. This study aims to clarify this role using hydrometric and hydrochemical observations of BG via boreholes and catchment discharge. The responses of the BG to rainfall are demonstrated to be fast and independent of the sediment cover. The BG exhibits different responses and flow paths that are largely controlled by the bedrock fracture system. The storm runoff in the studied catchment is characterized by rapid discharge response generally followed by a delayed discharge response. The peak of the delayed discharge is much faster than that observed in previous studies, and it is well correlated with the BG levels. A hydrograph separation was performed for two storm events using three end members: rainfall, shallow BG and deep BG. The results demonstrate that the delayed discharge is primarily composed of deep BG. Moreover, a significant contribution of shallow BG is observed during large precipitation events. Although we observed no physical evidence of direct contributions of BG in the catchment, the calculations presented in this study demonstrate that the BG controls the hydrological and hydrogeological response of the catchment to rainfall events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
80.
Optimum strong-motion array geometry for source inversions is again determined for each of three types of earthquake faults: strike-slip, dip-slip and offshore subduction thrust. The method is the same as employed in a previous study;1 however, use of a complete Green's function in an elastic half-space provides better results for engineering practice. It is found that the complete Green's function is capable of stabilizing the accuracy of an inversion solution obtained using theoretical seismograms, regardless of the differences in array configuration. The optimum strong-motion array for a strike-slip fault is characterized by stations well distributed in azimuth, while the optimum array for a dip-slip event has stations arranged in a grid-shaped form. The array geometries obtained here are grossly similar to those in the previous study,1 which were derived using only the far-field S waves, and are more consistent with those proposed at the 1978 International Workshop on Strong-Motion Earthquake Instrument Arrays.2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号