首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   17篇
  国内免费   10篇
测绘学   2篇
大气科学   15篇
地球物理   117篇
地质学   166篇
海洋学   121篇
天文学   80篇
综合类   5篇
自然地理   22篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   3篇
  2014年   23篇
  2013年   21篇
  2012年   12篇
  2011年   15篇
  2010年   20篇
  2009年   24篇
  2008年   24篇
  2007年   31篇
  2006年   26篇
  2005年   30篇
  2004年   10篇
  2003年   15篇
  2002年   8篇
  2001年   13篇
  2000年   10篇
  1999年   18篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有528条查询结果,搜索用时 328 毫秒
471.
Ten-day mean surface level air-temperature from SSMI precipitable water (SSMI-T a ) has been derived and compared with the temperature from two ocean data buoys (Buoy-T a ) of Japan Meteorological Agency (JMA) for a period of six months (July–December, 1988). Statistical relations between air-temperature and mixing ratio, using data from ocean data buoys are used to derive air-temperature from mixing ratio, obtained from SSMI precipitable water. For getting the mixing ratio from precipitable water, regional mixing ratio-precipitable water relations have been used, instead of global relation proposed by Liu (1986). The rms errors (standard deviation of the difference between SSMI-T a and Buoy-T a ) for two buoy locations are found to be 1.15 and 1.12°C, respectively. Surface level temperature for the two buoy locations are also derived using direct regression relation between Buoy-T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C.  相似文献   
472.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   
473.
A wind speed retrieval algorithm was developed using 6 and 10 GHz h-pol (6H and 10H) data of the Advanced Microwave Scanning Radiometer (AMSR) aboard the Advanced Earth Observation Satellite-II (ADEOS-II) and AMSR-E aboard AQUA, for the purpose of retrieving wind speed inside rainstorms, primarily hurricanes and typhoons. The h-pol was used rather than the v-pol, because the brightness temperature sensitivity to the ocean wind at h-pol is larger than v-pol. The microwave emission change of 6H and 10H corresponding to ocean wind was evaluated in no-rain areas by combining AMSR and SeaWinds data aboard the ADEOS-II (SeaWinds was NASA’s scatterometer), and it was found that the ratio of the two 6H to 10H increments due to ocean wind is 0.9. Assuming that this result also holds with higher wind speeds and under rainy conditions, the brightness temperatures at 6H and 10H were simulated using a microwave radiative transfer model. A parameter W6 (unit; Kelvin) was then defined, representing an increment at 6H due to ocean wind. W6 is applicable to rainy areas, and to all ranges of sea surface temperature. W6 was compared with wind speed reported by the National Hurricanes Center for several hurricanes in the Western Atlantic Ocean during three years (2002 to 2004). W6 averaged around centers of hurricanes was found to exhibit a sensitivity to wind speed, such as increasing from 22 K to 65 K as the wind speed rose from 65 to 140 knots (33 to 72 m/s), and an empirical relationship relating the averaged W6 to wind speed in hurricanes was derived.  相似文献   
474.
The photoelectric light curves of XY Cet of Srivastava and Padalia (1975) and of Morrison and Morrison (1968), from which considerably different sets of photometric elements have previously been deduced, were re-analyzed in detail. The elements derived in the present study from Srivastava and Padalia's (1975)UBV observations arer g=0.157±0.006 (p.e.),r s=0.142±0.007,i=88°.4±0°.5,L g=0.600±0.017, 0.602±0.015 and 0.584±0.018 forU, B andV, respectively. It is also found from their light curves that the system has an eccentric orbit withe cos =0.0026±0.0005. The elements deduced from theV observations of Morrison and Morrison (1968) are found to be in satisfactory agreement with those presented above.The existence of theAm characteristics of both components, which was recognized by earlier spectroscopic observations, are supported by theB-V andU-B color indices and [m 1] value of the system. Both components are also found to have appreciably evolved, as expected for metallicline stars.  相似文献   
475.
The porphyry Cu deposits at Waisoi in Namosi district, Viti Levu are separated into two deposits: the Waisoi East deposit and the Waisoi West deposit. In the Waisoi East deposit, quartz porphyry is exposed and in the Waisoi West deposit, diorite porphyry is sporadically exposed in addition to a small body of quartz porphyry. The mineralization in the Waisoi East deposit is characterized by the bornite–chalcopyrite–pyrite assemblage associated with traces of molybdenite and native gold. Polyphase fluid inclusions in stockwork quartz veinlets show homogenization temperatures ranging from 210 to >500°C. The high‐grade Cu mineralization in the Waisoi West deposit is characterized by the bornite–chalcopyrite–pyrite assemblage accompanied with sheeted and stockwork quartz veinlets. Polyphase fluid inclusions occasionally containing hematite flakes in quartz veinlets in the center of the Waisoi West deposit homogenize at temperatures ranging from 450°C to >500°C. However, fluid inclusions in stockwork quartz veinlets in the periphery, homogenize at lower temperatures around 210°C. Both in the Waisoi East and Waisoi West deposits, primary bornite–chalcopyrite–pyrite assemblage in the high Cu‐grade zone was deposited at the upper stability limit of chalcopyrite with respect to sulfur fugacity. Thus, the principal Cu mineralization at the Waisoi deposits occurred at a relatively high sulfur fugacity, that is, in a high‐sulfidation environment.  相似文献   
476.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   
477.
Tsuyoshi  Nohara  Hidemi  Tanaka  Kunio  Watanabe  Noboru  Furukawa  Akira  Takami 《Island Arc》2006,15(4):537-545
Abstract   The spatial hydrogeological and structural character of the active Mozumi-Sukenobu Fault (MSF) was investigated along a survey tunnel excavated through the MSF in the Kamioka Mine, central Japan. Major groundwater conduits on both sides of the MSF are recognized. One is considered to be a subvertical conduit between the tunnel and the surface, and the other is estimated to be a major reservoir of old meteoric water alongside the MSF. Our studies indicate that part of the MSF is a sub-vertical continuous barrier that obstructs younger meteoric water observed in the south-eastern part of the Active Fault Survey Tunnel (AFST) and water recharge to the rock mass intersected by the north-western part of the AFST. The MSF might be a continuous barrier resulting in the storage of a large quantity of older groundwater to the northwest. The observations and results of in situ hydraulic tests indicate that the major reservoir is not the fault breccia associated with the northeast–southwest trending faults of the MSF, but the zone in which blocks of fractured rocks occur beside high angle faults corresponding to X shears whose tectonic stress field coincides with the present regional stress field and antithetic Riedel shears of the MSF. The results from borehole investigations in the AFST indicate that secondary porosity is developed in the major reservoir due to the destruction of filling minerals and fracture development beside these shears. The increase in hydraulic conductivity is not directly related to increased density of fractures around the MSF. Development of secondary porosity could cause the increase in hydraulic conductivity around the MSF. Our results suggest that minor conduits of the fracture network are sporadically distributed in the sedimentary rocks around the MSF in the AFST.  相似文献   
478.
1 INTRODUCTION The conventional method for numerical study of coastal sedimentary processes has been based on the solution of a phase-averaged wave equation, the steady nearshore current equations, the continuity equation for sediment, and an empirical net sediment transport equation. This strategy has advantages in meso-scale problems but it loses accuracy in the vicinity of a structure, where local scour usually occurs. To have a good representation of both meso-scale sediment transport …  相似文献   
479.
Abstract   A single layer of widespread tephra deposits possibly can provide an instantaneous record of the past geomagnetic field and potentially can indicate even a small-scale tectonic rotation compared to a range of geomagnetic secular variations. We report paleomagnetic data of the Ebisutoge–Fukuda tephra, which is dated at approximately 1.8 Ma and is distributed in central Japan between the Osaka–Kyoto area and the Boso Peninsula. The Fukuda volcanic ash layer and its correlative ash deposits in the Osaka–Kyoto area, near Lake Biwa and in the Mie and Niigata areas yield identical site mean declinations of approximately −170° after tilt correction, whereas moderate inclination shallowing is observed in the upper unit at several localities. Anisotropy measurements both of low-field magnetic susceptibility and of anhysteretic remanent magnetization suggest that the inclination shallowing results from the biased alignment of magnetic grains, which were deposited in the fluvial environment. The source volcanic unit, Ebisutoge pyroclastic deposits in the Takayama area, yields a mean declination of approximately −155°, showing clockwise deflection from the magnetic directions of the correlative tephra deposits. These results suggest that no significant rotation occurred between the Osaka–Kyoto, Mie and Niigata areas, but that the Takayama area suffered a clockwise rotation in respect to the other areas during the Quaternary. This rotation might have been caused under an east–west stress field associated with the collision of the Okhotsk Plate with the Eurasia Plate.  相似文献   
480.
Abstract   Ophiolites and high-pressure (HP) metamorphic rocks are studied to test continuation of Paleozoic and early Mesozoic geological units from Japan to Primorye over the Japan Sea. The early Paleozoic ophiolites are present on both sides, and the late Paleozoic ophiolite of south-western Japan may also have its counterpart in Primorye. The Shaiginskiy HP schist and the associated Avdakimov gneiss in Primorye, both tectonically underlying the early Paleozoic ophiolitic complex, yield a 250-Ma phengite and hornblende K–Ar age, which is intermediate between those of the Renge (280–330 Ma) and Suo (170–220 Ma) blueschists in south-western Japan. This age also coincides with that of the coesite-bearing eclogites in the Sulu–Dabie suture in China and several medium-pressure metamorphic rocks in East Asia. On the basis of these results and other geological data, the authors propose the 'Yaeyama promontory' model for an eastward extension of the Sulu–Dabie suture. The collision suture warps southward into the Yellow Sea and detours around Korea, turns to the north at Ishigaki Island in the Yaeyama Archipelago of Ryukyu, where it changes into a subduction zone and further continues toward south-western Japan and Primorye. Most ophiolites from this area represent crust–mantle fragments of an island arc–back-arc basin system, and the repeated formation of ophiolite–blueschist associations may be due to the repetition of the Mariana-type non-accreting subduction and Nankai-type accreting subduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号