首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  国内免费   3篇
测绘学   1篇
大气科学   2篇
地球物理   21篇
地质学   19篇
海洋学   43篇
天文学   15篇
综合类   1篇
  2021年   1篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2011年   5篇
  2010年   4篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有102条查询结果,搜索用时 93 毫秒
71.
The 210Pb geochronology, heavy metal concentrations (Zn, Cu, and Pb), and stable Pb isotope ratios (206Pb/207Pb) of three sediment cores collected from Jakarta Bay were analyzed to decipher the history of heavy metal contamination in the period 1900–2006. The chemical and isotopic analyses clearly suggest that anthropogenic metal accumulation in the sediments began in the 1920s and increased greatly from the 1970s until the end of the 1990s. From the end of the 1990s to 2006, accumulation rates were constant or decreased for Zn and Pb near the coastal industrialized area. Comparison of economic data and sociological information suggests that the decline in the concentrations of heavy metals could be attributed to the stricter environmental regulations which were enforced at the end of 1990s. However, metal contamination is currently still an important cause of concern in dealing with environmental preservation and protection in Jakarta Bay.  相似文献   
72.
To identify the groundwater flow system in the North China Plain, the chemical and stable isotopes of the groundwater and surface water were analysed along the Chaobai River and Yongding River basin. According to the field survey, the study area in the North China Plain was classified hydrogeologically into three parts: mountain, piedmont alluvial fan and lowland areas. The change of electrical conductance and pH values coincided with groundwater flow from mountain to lowland areas. The following groundwater types are recognized: Ca? HCO3 and Ca? Mg? HCO3 in mountain areas, Ca? Mg? HCO3 and Na? K? HCO3 in piedmont alluvial fan areas, and HCO3? Na in lowland areas. The stable isotope distribution of groundwater in the study area also has a good corresponding relation with other chemical characteristics. Stable isotope signatures reveal a major recharge from precipitation and surface water in the mountain areas. Chemical and stable isotope analysis data suggest that mountain and piedmont alluvial fan areas were the major recharge zones and the lowland areas belong to the main discharge zone. Precipitation and surface water were the major sources for groundwater in the North China Plain. Stable isotopic enrichment of groundwater near the dam area in front of the piedmont alluvial fan areas shows that the dam water infiltrated to the ground after evaporation. As a result, from the stable isotope analysis, isotope value of groundwater tends to deplete from sea level (horizontal ground surface) to both top of the mountain and the bottom of the lowland areas in symmetrically. This suggests that groundwater in the study area is controlled by the altitude effect. Shallow groundwater in the study area belongs to the local flow system and deep groundwater part of the regional flow system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
73.
74.
The unsteady shallow-water vorticity equation dominating nearshore flow on a gently sloping plane beach has been solved by using the implicit finite difference technique under the assumption of constant viscosity over the flow field. The result of computation showed that pairs of nearshore circulation cells are generated through the nonlinear effect of flow in the boundary layer formed by the run-up movement of a standing edge wave along a shoreline and the paired cell has the spacing of half a wavelength of the edge wave. When the leaky-mode standing wave of Lamb with the same wave period as the edge wave and the wave crest parallel to a shoreline was superposed on the edge wave field, the alongshore spacing of circulation cell doubled and seaward flow in the cell concentrated in the narrow zone like a ‘rip current’. Although no effect of breaking waves is considered in the computation, such a mechanism may also generate some kinds of nearshore circulation systems observed in a sea.  相似文献   
75.
In the case of the dynamic analysis of the structures using the recorded earthquake ground motions, it is usually assumed that the ground motion consists of body waves propagating vertically. However, the response of a long and narrow structure may be influenced by the oblique propagation of body waves and the dispersion of surface waves. In this paper, the effects of the seismic wave propagation on the response of this kind of structure are investigated. The characteristics of the wave propagation were verified using the recorded motions and soil information at the building site. The ground motion at every input point of the building was evaluated using the difference of arrival time of seismic waves calculated by assuming the velocity and the direction of the wave propagation. Using these ground motions, response analyses of the lumped mass model for the structure were performed. By considering the characteristics of the seismic wave propagation, the average response decreased but the local response increased around the end of the roof. Further studies of the structure were also performed in order to restrain the response around the end of the roof.  相似文献   
76.
Several new active fault traces were identified along Katrol Hill Fault (KHF). A new fault (named as Bhuj Fault, BF) that extends into the Bhuj Plain was also identified. These fault traces were identified based on satellite photo interpretation and field survey. Trenches were excavated to identify the paleoseismic events, pattern of faulting and the nature of deformation. New active fault traces were recognized about 1km north of the topographic boundary between the Katrol Hill and the plain area. The fault exposure along the left bank of Khari River with 10m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault. The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2, and F3. These fault strands displaced the older terrace deposits comprising Sand, Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel, sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.  相似文献   
77.
Drifting sediment trap experiments were conducted during various seasons to elucidate the characteristics of particles sinking through the upper 200 m of the water column in the western Pacific at subarctic station K2 and subtropical station S1. The sinking particle flux increased when primary productivity was high at each station, during June–July at K2 and during February at S1. Biogenic opal (Opal) and CaCO3 were the major components of the fluxes at K2 and S1, respectively. Contrary to the expectation of a high flux at the eutrophic station K2 and low flux at the oligotrophic station S1, the annual average organic carbon fluxes at 100 m were comparable at both stations: 62.7 mg C m?2 day?1 at K2 and 56.1 mg C m?2 day?1 at S1. The similarity of the fluxes was perhaps a reflection of the unexpectedly high primary production at S1. At K2, the organic carbon export ratio (organic carbon flux/primary productivity) was significantly and negatively correlated with primary production and tended to decrease with depth. The magnitude of the rate of attenuation of the organic carbon flux with depth was larger at S1 than at K2. This rate of attenuation tended to decrease and increase with primary production at K2 and S1, respectively. The explanation for these patterns may be that the flux of labile organic carbon at relatively shallow depths decreased with increasing primary production at K2, and zooplankton grazing pressure increased with increasing primary productivity at S1.  相似文献   
78.
The circulation of intermediate and deep waters in the Philippine Sea west of the Izu-Ogasawara-Mariana-Yap Ridge is estimated with use of an inverse model applied to the World Ocean Circulation Experiment (WOCE) Hydrographic Program data set. Above 1500 m depth, the subtropical gyre is dominant, but the circulation is split in small cells below the thermocline, causing multiple zonal inflows of intermediate waters toward the western boundary. The inflows along 20°N and 26°N carry the North Pacific Intermediate Water (NPIW) of 11 × 109 kg s−1 in total, at the density range of 26.5σθ–36.7σ2 (approximately 500–1500 m depths), 8 × 109 kg s−1 of the NPIW circulate within the subtropical gyre, whereas the rest is conveyed to the tropics and the South China Sea. The inflow south of 15°N carries the Tropical Salinity Minimum water of 35 × 109 kg s−1, nearly half of which return to the east through a narrow undercurrent at 15–17°N, and the rest is transported into the lower part of the North Equatorial Countercurrent. Below 1500 m depth, the deep circulation regime is anti-cyclonic. At the density range of 36.7σ2, – 45.845σ4 (approximately 1500–3500 m depths), deep waters of 17 × 109 kg s−1 flow northward, and three quarters of them return to the east at 16–24°N. The remainder flows further north of 24°N, then turns eastward out of the Philippine Sea, together with a small amount of subarctic-origin North Pacific Deep Water (NPDW) which enters the Philippine Sea through the gap between the Izu Ridge and Ogasawara Ridge. The full-depth structure and transportation of the Kuroshio in total and net are also examined. It is suggested that low potential vorticity of the Subtropical Mode Water is useful for distinguishing the net Kuroshio flow from recirculation flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
79.
In order to evaluate the environmental impact associated with sequestration of carbon dioxide in the deep sea, a free fall type field experimental device, the benthic chamber, was developed. In situ experiments to expose deep-sea communities to elevated concentrations of carbon dioxide (average of 20,000 ppm, 5,000 ppm and control) were carried out using this device 3 times, viz., in the winter of 2002 and in the spring and the summer of 2003, in the Kumano Trough at a depth of 2,000 m. In the long-term experiments (about two weeks in winter of 2002 and summer of 2003), the abundance of meiobenthos declined whereas that of bacteria increased under the condition of 20,000 ppm carbon dioxide compared with the control. Among meiofauna, the abundance of foraminifers at the same concentration of carbon dioxide became less than the control even in the short-term (3 days in spring of 2003) experiment, suggesting that organisms with a calcium carbonate exoskeleton are more sensitive to the raised concentration of carbon dioxide. The respiration rate of the benthic community exposed to 20,000 ppm was lower in the early stage of the experiment than in the latter half, whereas it was opposite under the condition of 5,000 ppm. The increase of biological activity in the 20,000 ppm exposure group is probably due to an increase of bacteria adapted to high carbon dioxide concentrations. The present results suggest that the influence of carbon dioxide on the deep-sea benthic ecosystem does not follow a simple, linear relationship with concentration.  相似文献   
80.
The ADCP on an advanced towed fish with controllable main and tail wings, called DRAKE measured a detailed sectional structure of the Kuroshio flowing to the NE along the East China Sea shelf slope west of Okinawa. At the observation period, a countercurrent directed to the SW formed in near-bottom water on the shelf slope. The horizontal flow perpendicular to the stream axis of the Kuroshio constructed a convergence zone around the boundary between the Kuroshio and the countercurrent. An intensive upwelling with the maximum velocity of 2.8 cm s–1 was found to distribute on the shelf slope around the convergence zone. A dynamic cause of this intensive upwelling is discussed carefully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号