首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   6篇
测绘学   5篇
大气科学   9篇
地球物理   44篇
地质学   63篇
海洋学   48篇
天文学   25篇
自然地理   13篇
  2021年   2篇
  2019年   3篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   5篇
  2014年   9篇
  2013年   13篇
  2012年   10篇
  2011年   13篇
  2010年   14篇
  2009年   1篇
  2008年   15篇
  2007年   14篇
  2006年   7篇
  2005年   13篇
  2004年   7篇
  2003年   11篇
  2002年   1篇
  2001年   6篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1978年   2篇
  1977年   2篇
  1966年   1篇
排序方式: 共有207条查询结果,搜索用时 93 毫秒
21.
The Shinjima Pumice is a fines-depleted pumice lapilli tuff emplaced several thousands years ago at about 100–140 m below sea level. This 40-m-thick deposit comprises many poorly defined flow units, which are 1–10 m thick, diffusely stratified and showing upward-coarsening of pumice clasts with a sharp to transitional base. Parallel to wavy diffuse stratifications are commonly represented by alignment of pumice clasts, especially in the lower half of the flow units. Pumice clasts of block to coarse-lapilli size commonly have thermal-contraction cracks best developed on the surfaces, demonstrating that they were hot but cooled down to the ambient temperatures prior to their emplacement. These features are suggestive of the direct origin of the Shinjima Pumice from subaqueous eruptions. A theoretical consideration on the behavior of subaqueous eruption plumes and hot and cold pumice clasts suggests that subaqueous eruption plumes commonly collapse by turbulent mixing with the ambient water and are transformed into water-logged mass flows.  相似文献   
22.
Lateral load pattern in pushover analysis   总被引:9,自引:2,他引:7  
The seismic capacity curves of three types of buildings including frame, frame-shear wall and shear wall obtained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analysis. Based on the numerical results obtained a two-phase load pattern; an inverted triangle (first mode) load pattern until the base shear force reachesβ times its maximum value, Vmax, followed by a (x/H)α form, hereβ and α being some coefficients depending on the type of the structures considered, is proposed in the paper, which can provide excellent approximation of the seismic capacity curve for low-to-mid-rise shear type buildings. Furthermore, it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings. No suitable load patterns have been found for high-rise buildings.  相似文献   
23.
The performance of a 21-g lithium fluoride bolometer is presented. The background spectrum was measured in the surface laboratory. We derive an exclusion plot for the spin-dependent coupled Weakly Interacting Massive Particles (WIMPs) cross section.  相似文献   
24.
On October 25, 2010, a large earthquake occurred off the coast of the Mentawai islands in Indonesia, generating a tsunami that caused damage to the coastal area of North Pagai, South Pagai, and Sipora islands. Field surveys were conducted soon after the event by several international survey teams, including the authors’. These surveys clarified the tsunami height distribution, the damage that took place, and residents’ awareness of tsunamis in the affected islands. Heights of over 5 m were recorded on the coastal area of the Indian Ocean side of North and South Pagai islands and the south part of Sipora island. In some villages, it was difficult to evacuate immediately after the earthquake because of the lack of routes to higher ground or the presence of rivers. Residents in some villages had taken part in tsunami drills or education; however, not all villages shared awareness of tsunami threats. In the present paper, based on the results of these field surveys, the vulnerability of these islands with regards to future tsunami threats was analyzed. Three important aspects of this tsunami disaster, namely the geographic disadvantage of the islands, the resilience of buildings and other infrastructure, and people’s awareness of tsunamis, are discussed in detail, and corresponding tsunami mitigation strategies are explained.  相似文献   
25.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   
26.
27.
28.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   
29.
An intensive survey has been conducted of the distributions of some chemical properties (dissolved oxygen, nutrients and carbonate properties) in the Kuroshio/Oyashio Interfrontal Zone. Many low-salinity water patches were found down to depths of 640 m. Each chemical property also showed anomalies in these patches, but the degree of variation showed a low correlation with salinity. This may be due to the high variability of biological processes in the surface waters where these patches are formed. Vertical profiles of the chemical properties were also observed along the Kuroshio extension axis from 140.50°E to 146.75°E. The concentrations of nutrients and total carbonate (TC) in the water having densities greater than σθ=26.60 can be regarded as being formed by the isopycnal mixing of the Kuroshio component water and Oyashio component water and biological degradation within the density surfaces. This implies that the transport of chemical properties by the diapycnal mixing is negligible in these density layers in the K/O zone.  相似文献   
30.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号