首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   7篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   25篇
地质学   20篇
海洋学   28篇
天文学   26篇
自然地理   7篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   1篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
11.
The stick-slip of frictional sliding depends not only on material properties but also on the elastic and inertial properties of the loading system. To compare data from different testing machines or to apply them to the problem of natural seismogenic faulting, one must account for the differences in stiffness and mass. We develop a simple mechanical model to describe the stick-slip oscillation during frictional sliding in a triaxial-compression machine. The experimental system, the loading frame and rock specimen with precut sliding surface, is divided into two subsystems across this surface. The model is based upon two key assumptions: the kinetic friction is constant regardless of the relative motion of the subsystems, and the elastic restoring force is uniform throughout each subsystem. The first assumption leads to the decoupling of the subsystems, and the behavior of each becomes mathematically analogous to that of a simple spring/mass/slider-block model, owing to the second assumption. The theory agrees well with the experimental data from the dynamic measurements of stick-slip. The displacement-time function is of cosine form, the rise time of stick-slip is constant, and the relation between force drop and average displacement rate is linear. From this model we argue that the differences in the frictional behavior of experimental fault-gouges may indeed be ascribed to differences in the material properties of their specimens because the elastic and inertial properties of a particular testing machine are little influenced by the specimen itself, so long as all specimens are of about the same size. However, interlaboratory correlations may well be invalid unless machine effects are properly accounted for.  相似文献   
12.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   
13.
In order to examine the spatial variability of the aerosol characteristics across the Brahmaputra valley, a land campaign was conducted during late winter (February 3–March 2) 2011. Measurements of particulate matter (PM, PM10, PM2.5) and black carbon (BC) concentrations were made onboard an interior redesigned vehicle. The length of the campaign trail stretched about 700 km, covering the longitude belt of 89.97°–95.55°E and latitude belt of 26.1°–27.6°N, comprising 13 measurement locations. The valley is divided into three sectors longitudinally: western sector (R1: 89.97°–91.75°E), middle sector (R2: 92.5°–94.01°E) and eastern sector (R3: 94.63°–95.55°E). Spatial heterogeneity in aerosol distribution has been observed with higher PM10 and PM2.5 concentrations at the western and middle sectors compared to the eastern sector. The locations in the western sector are found to be rich in BC compared to the other two sectors and there is a gradual decrease in BC concentrations from west to east of the Brahmaputra valley. Two hotspots within the western and middle sectors with high PM and BC concentrations have been identified. The associated physico-optical parameters of PM reveal abundance of PM2.5 aerosols along the entire valley. High population density in the western and middle sectors, together with the contribution of remote aerosols, leads to higher anthropogenic aerosols over those regions. Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) slightly underestimates the measured PM10 and PM2.5 at the eastern sector while the model overestimates the measurements at a number of locations in the western sector. In general, BC is underestimated by the model. The variation of BC within the campaign trail has not been adequately captured by the model leading to higher variance in the western locations as compared to the middle and eastern locations.  相似文献   
14.
15.
We describe the method and the result of a new experiment to obtain velocity distribution of fine ejecta fragments, from a few to a hundred microns in size, produced from basalt targets by impacts of nylon projectiles at a velocity of 3.7 km s−1. The size distribution of holes perforated by the ejecta fragments on thin films and foils placed around the targets was investigated, and the size-velocity relation was determined with the aid of an empirical formula for threshold penetration (McDonnell and Sullivan, Hypervelocity Impacts in Space, Unit for Space Sciences, University of Kent, 1992). The velocity of the fastest fragments, at a given size, is from the extrapolation of the size-velocity relation for 1–100 mm fragments (Nakamura and Fujiwara, Icarus92, 132–146, 1991; Nakamura et al, Icarus100, 127–135, 1992). The laboratory results are also compared with those obtained from the study of secondary craters around large lunar craters (Vickery, Icarus67, 224–236, 1986, Geophys. Res. Lett. 14, 726–729, 1987). All these data provide a smooth size-velocity relationship in the normalized fragment size range of four orders of magnitude.  相似文献   
16.
17.
18.
Far-infrared properties of metallic particle are reinvestigated in detail. In the far-infrared region, absorption due to the eddy current generally dominates over that obtained by using the Rayleigh approximation erroneusly. The wavelength dependence of the eddy current term is examined carefully and shown to be less steep than that predicted by the Rayleigh approximation for dust grains larger than 100 nm in radius. It also depends more sensitively on the grain size. A wider temperature distribution is expected corresponding to a given size distribution and hence the emission spectrum becomes less steep than the preductions by the Rayleigh approximation. Iron and graphite particles are investigated as typical interstellar metallic grains. Effects of coating of dielectric materials are also examined. Comparisons with experimental results and with observations are discussed.  相似文献   
19.
We present a new experimental result of fragment spin-rate in impact disruption, using a thin glass plate. A cylindrical projectile impacts on a side (edge) of the plate. Dispersed fragments are observed using a high-speed camera and the spin rates of fragments are measured. We find that the measured fragment spin-rate decreases with increasing size. Assuming that the rotational energy of fragments is supplied from the residual stress, the spin rate ω decreases with increasing fragment size r as ωr−1, which explains the above experimental results. This size-dependence is similar to that of the observed spin rates of small fast-rotating asteroids. Our results suggest that spin rates of fragments of small asteroids immediately after disruption may have a similar size-dependence, and can provide constraints on the subsequent spin-state evolution of small asteroids due to thermal torques.  相似文献   
20.
In order to understand the penetration process of projectiles into lower-density targets, we carry out hypervelocity impact experiments using low-density (60 mg cm?3) aerogel targets and various types of projectiles, and observe the track formation process in the targets using a high-speed camera. A carrot shaped track, a bulbous, and a “hybrid” one consisting of bulbous and thin parts, are formed. The results of the high-speed camera observations reveal the similarity and differences on the temporal evolution of the penetration depth and maximum diameter of these tracks. At very early stages of an impact, independent of projectile type, the temporal penetration depth is described by hydrodynamic models for the original projectiles. Afterward, when the breakup of projectiles does not occur, intact projectiles continue to penetrate the aerogels. In the case of the breakup of projectiles, the track expands with a velocity of about a sound velocity of the aerogel at final stages. If there are large fragments, they penetrate deeper and the tracks become a hybrid type. The penetration of the large fragments is described by hydrodynamic models. Based on these results, we discuss the excavation near the impact point by shock waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号