首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   28篇
  国内免费   1篇
测绘学   8篇
大气科学   43篇
地球物理   75篇
地质学   163篇
海洋学   30篇
天文学   70篇
综合类   5篇
自然地理   30篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   12篇
  2013年   26篇
  2012年   15篇
  2011年   24篇
  2010年   24篇
  2009年   35篇
  2008年   23篇
  2007年   24篇
  2006年   20篇
  2005年   21篇
  2004年   16篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   12篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1959年   1篇
排序方式: 共有424条查询结果,搜索用时 31 毫秒
331.
Acta Geochimica - Goethite (α-FeOOH) is one of the most abundant minerals on the Earth surface, occurring in temperate, tropical and equatorial climates. Fe in goethite can be substituted by...  相似文献   
332.
333.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   
334.
Stable organic carbon and nitrogen isotopes can be used to interpret past vegetation patterns and ecosystem qualities. Here we present these proxies for two loess-palaeosol sequences from the southern Carpathian Basin to reconstruct the palaeoenvironment during the past 350 ka and establish regional commonalities and differences. Before now, isotopic studies on loess sequences from this region were only conducted on deposits from the last glacial cycle. We conducted methodological tests involving the complete decalcification of the samples prior to stable isotope analyses. Two decalcification methods (fumigation method and wet chemical acidification), different treatment times, and the reproducibility of carbon isotope analyses were tested. Obtained results indicate that the choice of the decalcification method is important for organic carbon stable isotope analyses of loess-palaeosol sequences because ratios vary by more than 10‰ between the wet chemical and fumigation methods, due to incomplete carbonate removal by the latter. Therefore, we suggest avoiding the fumigation method for studies on loess-palaeosol sequences. In addition, our data show that samples with TOC content <0.2% bear increased potential for misinterpretation of their carbon isotope ratios. For our sites, C3-vegetation is predominant and no palaeoenvironmental shifts leading to a change of the dominant photosynthesis pathway can be detected during the Middle to Late Pleistocene. Furthermore, the importance of further stable nitrogen isotope studies is highlighted, since this proxy seems to reflect past precipitation patterns and reveals favourable conditions in the southern Carpathian Basin, especially during interstadials.  相似文献   
335.
Studies of modern cyanobacterial mats and biofilms show that they can precipitate minerals as a consequence of metabolic and degradational activities paired with ambient hydrochemical conditions. This study looked at modern microbial mats forming giant, tower‐like, groundwater‐fed, calcareous microbialites in the world's largest, highly alkaline lake; Van Gölü (Lake Van), East Turkey. Results show that microbial systems play a role not only in carbonate precipitation but also in the formation of siliceous mineral phases. Transmitted light microscopy, scanning electron microscopy and spectral observations revealed that, within the extracellular polymeric substances excreted by the mats abundant minute aragonite grains precipitated first in vivo. These minute grains were quickly succeeded and/or supplemented in the dead biomass of the cyanobacterial mat by authigenic Al–Mg–Fe siliceous phases. Silicon dioxide is available in large concentrations in the highly alkaline water of Lake Van. Divalent cations (Ca and Mg) are delivered to the microbialites mostly by groundwater springs. The precipitation of the fine‐grained siliceous phases is probably mediated by bacteria degrading the cyanobacterial biomass and complexing the excessive cations with their extracellular polymeric envelopes. The bacteria serve as nucleation centres for the subsequent precipitation of siliceous mineral phases. Generally, the biphasic (calcareous and siliceous) mineralization – characterizing Lake Van microbialites – is controlled by their interior highly dynamic hydrogeochemical situation. There, the dramatically different alkaline lake water and the Ca–Mg‐charged groundwater mix at various rates. The early diagenetic replacement of the in vivo aragonite by authigenic siliceous phases significantly increases the fossilization potential of the mat‐forming cyanobacteria. Lake Van and its giant microbialite tufa towers act as a model explaining the transformation of early diagenetic mineral phases observed in many modern and ancient carbonate marine deposits, particularly those influenced by diffusion of silica‐enriched and metal‐enriched pore waters from below the water–sediment interface.  相似文献   
336.
Lake Towuti on Sulawesi Island, Indonesia, is located within the heart of the Indo‐Pacific Warm Pool. This tropical lake is surrounded by ultramafic (ophiolitic) rocks and lateritic soils that create a unique ferruginous depositional setting. In order to understand modern sediment deposition in Lake Towuti, a set of 84 lake surface sediment samples was collected from across the entirety of the lake and samples were analyzed for their physical, chemical, mineralogical and biological constituents. End‐member analyses were carried out to elucidate modern sediment origin, transport and depositional processes. This study found that allochthonous sediment, characterized by the concentrations of the elements Mg, Fe, Si and Al, as well as the clay and serpentine minerals, is dominated by fluvial supply from five distinct source areas. Granulometric data and the occurrence of organic matter of a terrestrial origin suggest that, in the southern and north‐eastern parts of the lake the near‐shore sediments may additionally be influenced by mass wasting. This is due at least partly to the particularly steep slopes in these areas. Furthermore, sediment composition suggests that sediment transport into deeper parts of the lake, particularly in the northern basin, is partly controlled by gravitational and density‐driven processes such as turbidity currents. Directional sediment transport by persistent lake currents, in contrast, appears to be less important. Organic matter deposition in the ultra‐oligotrophic lake, albeit limited, is dominated by autochthonous production, but with some contribution of fluvial and gravitational supply. Biogenic silica deposition, primarily from diatom frustules and sponge spicules, is very limited and is concentrated in only a few areas close to the shoreline that are characterized by shallow waters, but away from the areas of high suspension loads at the mouths of the major inlets. The results of this study build upon current and published work on short piston cores from Lake Towuti. Conversely, the results will support the interpretation of the depositional history and past climatic and environmental conditions derived from the composition of much longer records, which were obtained by the Towuti Drilling Project in May 2015 and are currently under investigation.  相似文献   
337.
Exceptional exposure of the forearc region of NW Peru offers insight into evolving convergent margins. The sedimentary fill of the Talara basin spans the Cretaceous to the Eocene for an overall thickness of 9000 m and records within its stratigraphy the complicated history of plate interactions, subduction tectonics, terrane accretion, and Andean orogeny. By the early Tertiary, extensional tectonism was forming a complex horst and graben system that partitioned the basin into a series of localized depocentres. Eocene strata record temporal transitions from deltaic and fluvial to deep‐water depositional environments as a response to abrupt, tectonically controlled relative sea‐level changes across those depocentres. Stratigraphic and provenance data suggest a direct relationship between sedimentary packaging and regional tectonics, marked by changes in source terranes at major unconformities. A sharp shift is recognized at the onset of deepwater (bathyal) sedimentation of the Talara Formation, whose sediments reflect an increased influx of mafic material to the basin, likely related to the arc region. Although the modern topography of the Amotape Mountains partially isolates the Talara basin from the Lancones basin and the Andean Cordillera to the east, provenance data suggest that the Amotape Mountains were not always an obstacle for Cordilleran sediment dispersal. The mountain belt intermittently isolated the Talara basin from Andean‐related sediment throughout the early Tertiary, allowing arc‐related sediment to reach the basin only during periods of subsidence in the forearc region, probably related to plate rearrangement and/or seamounts colliding with the trench. Intraplate coupling and/or partial locking of subduction plates could be among the major causes behind shifts from contraction to extension (and enhanced subduction erosion) in the forearc region. Eventually, collisional tectonic and terrane accretion along the Ecuadorian margin forced a major late‐Eocene change in sediment dispersal.  相似文献   
338.
339.
Summary  This paper is a contribution to experimental meteorology: A sea-breeze front was investigated by aircraft observations and thorough numerical analysis using an unprecedented number of runs crossing the same front within a timespan of . The 33 runs were flown in a situation of offshore geostrophic wind of 5 m/s in 1000 hPa and with the strategy of obtaining information on the four-dimensional field (t=time, x=cross-coastal coordinate, y=coast-parallel coordinate, z=height): 9 runs in x-direction (and reverse) at different heights to yield x,z-cross-sections of the observed meteorological quantities (specific humidity q, potential temperature Θ and the components u, v and w of the wind velocity), assuming a frozen structure in time; the next 7 runs again in x-direction but all at the same level and on the same track to yield x,t-diagrams of the same quantities in order to study the temporal changes compared to those with x and z; the next 10 runs as a zig-zagging flight track crossing the front but drifting in y-direction, all at the same height, in order to obtain the y-dependency; andfinally 7 runs for another x,z-cross-sectional analysis, which can be compared to that evaluated from the runs at the beginning of the mission. The paper describes the 4-dimensional dependencies in detail. Pure x-variations at constant z are expressed by VCM low-pass filtered space series (VCM=variance conserving multiresolution, according to Howell and Mahrt, 1994). The x,z-analyses are similar to those in Kraus et al. (1990) and Finkele et al. (1995) verifying these results. The comparison of the x,z-studies gained from the data at the beginning and at the end of the mission show how the sea-breeze frontal area changes its structure. The fluctuations (in time) revealed by the low-pass filtered x,t-runs (same track and same height) are smaller than the contour intervals chosen in the x,z-cross-sections. This shows, that the single runs, from which the x,z-cross-sections are constructed, reliably and significantly contribute to the interpolated structure. The paper also demonstrates the overall development of the front within the 31/2 h of continuous observation. The x,y-fields demonstrate that the y-dependency of the various quantities is generally one order of magnitude smaller than the x-dependency and that the assumption of negligible y-dependency holds in the first order of approximation for a fairly homogeneous coast. Convective disturbances of a horizontal scale of 1 to 4 km at the landward side of the front, embedded in the offshore flow and bouncing against the landward propagating sea-breeze front, considerably contribute to variations of the frontal propagation speed and of the frontal shape and also to changes of the parameters with the along-frontal coordinate y. Received April 24, 1998 Revised November 3, 1998  相似文献   
340.
Examination with scanning electron microscopy (SEM) and scanning force microscopy (SFM) revealed etch pits, layers and islands on dolomite crystal faces synthesized from calcite in Ca‐Mg‐Cl solutions at 200 °C and a wide variety of natural dolomites. Layers are broad, flat structures bounded by steps less than 100 nm high and greater than 1 μm wide. Islands are rounded topographic highs <20 nm high and <200 nm wide. The nanotopography of synthetic dolomite changed from islands throughout most of the reaction to layers at 100% dolomite. Island nanotopography formed on both Ca‐rich and near‐stoichiometric dolomite. Analyses of reaction products from dolomite synthesis indicates that there are no SFM‐detectable products formed in <10 h. SEM‐detectable products formed in 15 h. X‐ray diffraction (XRD)‐detectable products formed in ≈18 h, and the reaction went to completion in ≈40 h. Based on SFM analyses, the induction period for dolomitization in these experiments accounts for ≈20% of the total reaction time necessary to dolomitize CaCO3 completely under the experimental conditions used here. Island nano‐ topography is inferred to occur at higher degrees of supersaturation than layer nanotopography for three reasons. First, island nanotopography on synthetic calcite and gypsum forms at higher supersaturations than layer nanotopography. Secondly, island nanotopography formed in solutions with higher degrees of supersaturation with respect to dolomite. Thirdly, the greater surface roughness of a crystal face composed of islands compared with layers indicates that island surfaces have higher surface energy than layer surfaces. Therefore, the stability of island surfaces requires a higher degree of supersaturation. Because islands and layers form under a wide range of conditions, their presence provides broadly applicable criteria for evaluating relative degrees of supersaturation under which ancient dolomite formed. Comparison of synthetic dolomites with natural dolomites demonstrates (1) similar nanotopography on natural and synthetic dolomites and (2) both natural planar and non‐planar dolomite may have island nanotopography.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号