首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   22篇
  国内免费   10篇
测绘学   25篇
大气科学   20篇
地球物理   116篇
地质学   261篇
海洋学   27篇
天文学   19篇
综合类   26篇
自然地理   52篇
  2023年   2篇
  2022年   15篇
  2021年   16篇
  2020年   19篇
  2019年   12篇
  2018年   23篇
  2017年   26篇
  2016年   26篇
  2015年   20篇
  2014年   38篇
  2013年   46篇
  2012年   41篇
  2011年   35篇
  2010年   28篇
  2009年   31篇
  2008年   17篇
  2007年   12篇
  2006年   20篇
  2005年   11篇
  2004年   12篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   6篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有546条查询结果,搜索用时 31 毫秒
61.
Antarctic tabular icebergs are important active components in the ice sheet-ice shelf-ocean system. Seafloor topography is the key factor that affects the drifting and grounding of icebergs, but it has not been fully investigated. This study analyzes the impact of seafloor topography on the drifting and grounding of Antarctic tabular icebergs using Bedmap-2 datasets and iceberg route tracking data from Brigham Young University. The results highlight the following points. (1) The quantitative distributions of iceberg grounding events and the tracking points of grounded icebergs are mainly affected by iceberg draft and reach their peak values in sea water with depths between 200 m and 300 m. The peak tracking point number and linear velocity of free-drifting icebergs are found in the Antarctic Slope Front (water depth of approximately 500 m). (2) The area of possible grounding regions of small-scale icebergs calved from ice shelf fronts accounts for 28% of the sea area at water depths less than 2000 m outside the Antarctic coastline periphery (3.62 million km2). Their spatial distribution is mainly around East Antarctica and the Antarctic Peninsula. The area of possible grounding regions of large tabular icebergs with long axes larger than 18.5 km (in water depths of less than 800 m) accounts for 74% of the sea area. (3) The iceberg drifting velocity is positively correlated with ocean depth in areas where the depth is less than 2000 m (R=0.85, P<0.01). This result confirms the effect of water depth variations induced by seafloor topography fluctuations on iceberg drifting velocity.  相似文献   
62.
Predicting the streamflow of rivers can have a significant economic impact, as this can help in agricultural water management and in providing protection from water shortages and possible flood damage. In this study, two statistical models have been used; Deseasonalized Autoregressive moving average model (DARMA) and Artificial Neural Network (ANN) to predict monthly streamflow which important for reservoir operation policy using different time scale, monthly and 1/3 monthly (ten-days) flow data for River Nile basin at five key stations. The streamflow series is deseasonalized at different time scale and then an appropriate nonseasonal stochastic DARMA (p, q) models are built by using the plots of Partial Auto Correlation Function (PACF) to determine the order (p) of DARMA model. Then the deseasonalized data for key stations are used as input to ANN models with lags equals to the order (p) of DARMA model. The performance of ANN and DARMA models are compared using statistical methods. The results show that the developed model (using 1/3 monthly (ten-days) and ANN) has the best performance to predict monthly streamflow at all key stations. The results also show that the relative error in the developed model result did not exceed 9% while in the traditional models reach to 68% in the flood months in the testing period. The result also indicates that ANN has considerable potential for river flow forecasting.  相似文献   
63.
Multi-regression, hydrologic sensitivity and hydrologic model simulations were applied to quantify the climate change and anthropogenic intervention impacts on the Lower Zab River basin (LZRB). The Pettitt, precipitation-runoff double cumulative curve (PR-DCC) and Mann–Kendall methods were used for the change points and significant trend analyses in the annual streamflow. The long-term runoff series from 1979 to 2013 was first divided into two main periods: a baseline (1979–1997) and an anthropogenic intervention period (1998–2013). The findings show that the mean annual streamflow changes were consistent using the three methods. In addition, climate variability was the main driver, which led to streamflow reduction with contributions of 66–97% during 2003–2013, whereas anthropogenic interventions caused reductions of 4–34%. Moreover, to enhance the multi-model combination concept and explore the simple average method (SAM), Hydrologiska Byrans Vattenbalansavdelning (HBV), Génie Rural a Daily 4 parameters (GR4J) and Medbasin models have been successfully applied.  相似文献   
64.
Traditional numerical methods for the delineation of wellhead protection areas span deterministic and probabilistic approaches. They provide time-related capture zones. However, none of the existing approaches identifies the groundwater contribution areas related to each source or sink. In this work, the worthiness of the so-called double delineation approach was extended. This task was achieved by simple postprocessing of its dual outputs leading to a highly efficient screening tool. In the particular context of geothermal resources management through the well doublets of the Dogger aquifer in the Paris Basin (France), the approach was extended to forecast the compositional heat breakthrough at production wells. Hence, cold-water breakthrough and temperature decline in production wells are timely assessed in low-enthalpy geothermal reservoirs. The method quantifies how groundwater volumes are moving through space and time between any couple of source and sink. It provides unprecedented tools advancing the enhanced understanding of water resources systems functioning. It is highly recommended to implement the presented concepts in the current and future generations of community groundwater models.  相似文献   
65.
Analysis of amplitude variation with offset is an essential step for reservoir characterization. For an accurate reservoir characterization, the amplitude obtained with an isotropic assumption of the reservoir must be corrected for the anisotropic effects. The objective is seismic anisotropic amplitude correction in an effective medium, and, to this end, values and signs of anisotropic parameter differences (Δδ and Δε) across the reflection interfaces are needed. These parameters can be identified by seismic and well log data. A new technique for anisotropic amplitude correction was developed to modify amplitude changes in seismic data in transversely isotropic media with a vertical axis of symmetry. The results show that characteristics of pre-stack seismic data, that is, amplitude variation with offset gradient, can be potentially related to the sign of anisotropic parameter differences (Δδ and Δε) between two layers of the reflection boundary. The proposed methodology is designed to attain a proper fit between modelled and observed amplitude variation with offset responses, after anisotropic correction, for all possible lithofacies at the reservoir boundary. We first estimate anisotropic parameters, that is, δ and ε, away from the wells through Backus averaging of elastic properties resulted from the first pass of isotropic pre-stack seismic inversion, on input data with no amplitude correction. Next, we estimate the anisotropic parameter differences at reflection interfaces (values and signs of Δδ and Δε). We then generate seismic angle gather data after anisotropic amplitude correction using Rüger's equation for the P-P reflection coefficient. The second pass of isotropic pre-stack seismic inversion is then performed on the amplitude-corrected data, and elastic properties are estimated. Final outcome demonstrates how introduced methodology helps to reduce the uncertainty of elastic property prediction. Pre-stack seismic inversion on amplitude-corrected seismic data results in more accurate elastic property prediction than what can be obtained from non-corrected data. Moreover, a new anisotropy attribute (ν) is presented for improvement of lithology identification.  相似文献   
66.
Permafrost covers approximately 24% of the Northern Hemisphere, and much of it is degrading, which causes infrastructure failures and ecosystem transitions. Understanding groundwater and heat flow processes in permafrost environments is challenging due to spatially and temporarily varying hydraulic connections between water above and below the near-surface discontinuous frozen zone. To characterize the transitional period of permafrost degradation, a three-dimensional model of a permafrost plateau that includes the supra-permafrost zone and surrounding wetlands was developed. The model is based on the Scotty Creek basin in the Northwest Territories, Canada. FEFLOW groundwater flow and heat transport modeling software is used in conjunction with the piFreeze plug-in, to account for phase changes between ice and water. The Simultaneous Heat and Water (SHAW) flow model is used to calculate ground temperatures and surface water balance, which are then used as FEFLOW boundary conditions. As simulating actual permafrost evolution would require hundreds of years of climate variations over an evolving landscape, whose geomorphic features are unknown, methodologies for developing permafrost initial conditions for transient simulations were investigated. It was found that a model initialized with a transient spin-up methodology, that includes an unfrozen layer between the permafrost table and ground surface, yields better results than with steady-state permafrost initial conditions. This study also demonstrates the critical role that variations in land surface and permafrost table microtopography, along with talik development, play in permafrost degradation. Modeling permafrost dynamics will allow for the testing of remedial measures to stabilize permafrost in high value infrastructure environments.  相似文献   
67.
We introduce a concept of generalized blending and deblending, develop its models and accordingly establish a method of deblended-data reconstruction using these models. The generalized models can handle real situations by including random encoding into the generalized operators both in the space and time domain, and both at the source and receiver side. We consider an iterative optimization scheme using a closed-loop approach with the generalized blending and deblending models, in which the former works for the forward modelling and the latter for the inverse modelling in the closed loop. We applied our method to existing real data acquired in Abu Dhabi. The results show that our method succeeded to fully reconstruct deblended data even from the fully generalized, thus quite complicated blended data. We discuss the complexity of blending properties on the deblending performance. In addition, we discuss the applicability to time-lapse seismic monitoring as it ensures high repeatability of the surveys. Conclusively, we should acquire blended data and reconstruct deblended data without serious problems but with the benefit of blended acquisition.  相似文献   
68.
Railway ballast forms a major component of a conventional rail track and is used to distribute the load to the subgrade, providing a smooth running surface for trains. It plays a significant role in providing support for the rail track base and distributing the load to the weaker layer underneath. Ballast also helps with drainage, which is an important factor for any type of transportation structure, including railroads. Over time, ballast progressively deforms and degrades under dynamic loading and loses its strength. In this study, extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on the behavior of the reinforced ballast layer and induced strains in a geogrid. A half full-scale railway was constructed for carrying out the tests, which consisted of two rails 800 mm in length with three wooden sleepers(900 mm × 10 mm × 10 mm). Three ballast thicknesses of 200, 300 and 400 mm were used in the tests. The ballast was overlying 500 mm thickness clay in two states, soft and stiff. The tests were carried out with and without geogrid reinforcement; the tests were performed in a well-tied steel box of 1.5 m length ×1 m width ×1 m height. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the amount of settlement increased as the simulated train load amplitude increased, and there was a sharp increase in settlement up to cycle 500. After that, there was a gradual increase that leveled out between, 2500 to 4500 cycles depending on the frequency used. There was a slight increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton but it was higher when the load amplitude increased to 2 tons. The increased amount in settlement depended on the existence of the geogrid and other parameters studied. The transmitted average vertical stress for ballast thicknesses of 30 cm and 40 cm increased as the load amplitude increased, regardless of the ballast reinforcement for both soft and stiff clay. The position of the geogrid had no significant effect on the transmitted stresses. The value of the soil pressure and pore water pressure on ballast thicknesses of 20 cm was higher than for 30 cm and 40 cm thicknesses. This meant that the ballast attenuated the induced waves. The soil pressure and pore water pressure for reinforced and unreinforced ballast was higher in stiff clay than in soft clay.  相似文献   
69.
This study evaluates the Late Ordovician glaciofluvial deposits of the Sarah Formation and equivalent outcroppings in north, central, and southwestern Saudi Arabia. The Sarah Formation also covers a wide area in the subsurface and is considered as an important target for unconventional tight gas reservoir. Defining the fracture types, nature, and distribution in outcrop scale might help to establish a successful fracture simulation model and behavior for the Sarah tight gas reservoir in the subsurface. This study investigates fracture characteristics for the Sarah Formation at Sarah paleochannel outcrops. The study revealed three sets of fractures, which have EW, NS, and SE-NW directions, and these fractures vary from open, resistive, and filled to resistive fractures. The closed fractures are filled with ferruginated iron oxides and gypsum. The filled fractures (the thrust boundary) are found in the study area at the SE-NW strike fracture set, while open and resistive fractures are found mainly at S-N and E-W fracture sets, respectively. The syn-depositional filled fractures (iron oxides) are considered as the younger fracture sets while the open and resistive fractures are post-depositional fractures which may have resulted from uplift or tectonic movement. A general model representing the fracture pattern and the thrusting boundaries due to glacial movement was constructed. It has been noticed that the systematic occurrence of filled fractures (thrust boundaries) described the boundaries between different glacial events, which act as a fluid barrier (filled fractures) and decrease the reservoir quality. The finding of this study might be utilized as a guide and lead for exploration in the subsurface Sarah glacial deposits. It will also help to understand and speculate the nature pattern and distribution of fractures with the Sarah Formation.  相似文献   
70.
Three dimensional (3D) photorealistic models of geological outcrops have the potential to enhance the teaching of earth sciences by providing scale models in a virtual reality environment. These models can be run on low-cost desktop computers. Photorealistic models for geological outcrops are a digital illustration of outcrop photographs with either a point cloud representation or Triangular Irregular Network (TIN) mesh of the outcrop surface. The level of detail for these models is dependent on the target resolutions (physical and optical) that were used during data acquisition. In addition, the technique in which the data is rendered as a digital model affects the level of detail that can be observed by the geologists. A colored point cloud representation is suitable for large-scale features, but fine details are lost when the geologist zooms in to view the model close up. In contrast, a photorealistic model that is constructed from photographs draped onto a triangle mesh surface derived from Light Detection and Ranging (LiDAR) point clouds provides a level of detail that is restricted only by the resolution of the photographs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号