首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3733篇
  免费   98篇
  国内免费   16篇
测绘学   91篇
大气科学   292篇
地球物理   742篇
地质学   1157篇
海洋学   383篇
天文学   848篇
综合类   3篇
自然地理   331篇
  2021年   20篇
  2020年   39篇
  2019年   41篇
  2018年   57篇
  2017年   39篇
  2016年   76篇
  2015年   64篇
  2014年   80篇
  2013年   188篇
  2012年   103篇
  2011年   157篇
  2010年   112篇
  2009年   183篇
  2008年   146篇
  2007年   150篇
  2006年   126篇
  2005年   120篇
  2004年   130篇
  2003年   116篇
  2002年   120篇
  2001年   86篇
  2000年   96篇
  1999年   76篇
  1998年   75篇
  1997年   58篇
  1996年   55篇
  1995年   65篇
  1994年   56篇
  1993年   53篇
  1992年   47篇
  1991年   52篇
  1990年   39篇
  1989年   49篇
  1988年   37篇
  1987年   60篇
  1986年   45篇
  1985年   68篇
  1984年   82篇
  1983年   77篇
  1982年   65篇
  1981年   64篇
  1980年   58篇
  1979年   44篇
  1978年   39篇
  1977年   51篇
  1976年   39篇
  1975年   43篇
  1974年   21篇
  1973年   31篇
  1972年   24篇
排序方式: 共有3847条查询结果,搜索用时 15 毫秒
11.
12.
Summary. Atmospheric pressure waves from the Mount St Helens eruption 1980 May 18 have been clearly recorded by a sensitive microbarograph at Berkeley, California. The record shows three types of waves with different group velocities. The pressure waves can be interpreted in terms of direct waves A1, antipodean travelling waves A2 and circumnavigating waves A3, all of which are composed of several acoustic-gravity modes propagated in the lower atmosphere. Synthetic barograms appropriate to the Berkeley station have been calculated on the basis of the dynamic response of the lower atmospheric structure, together with various assumptions of source properties. Comparisons between synthetic and observed barograms provide estimates for ranges of the time history of upward particle velocity at the source, source dimensions and the velocity of the source spreading over the blast zone, as well as for the average dissipation effects over the circumferential path. The results suggest that two major compression pulses on the A1 record correlate with the arrival of pressure waves from the first (lateral) blast and second (vertical) blast, although the inferred interblast time interval is not consistent with that estimated from seismic observations.  相似文献   
13.
14.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   
15.
Dryer  M.  Fry  C.D.  Sun  W.  Deehr  C.  Smith  Z.  Akasofu  S.-I.  Andrews  M.D. 《Solar physics》2001,204(1-2):265-284
Prediction of solar-generated disturbances and their three-dimensional propagation through interplanetary space continues to present a vitally important operational space weather forecasting objective. This paper presents the first successful real-time prediction of a series of major heliospheric shock waves at Earth, including the one from the 14 July 2000 (`Bastille Day') flare. An ensemble of three models and their predictions were distributed to a world-wide group of interested scientists as part of an informal Internet space weather forecast research program. Two of the models, STOA (Shock Time of Arrival) and ISPM (Interplanetary Shock Propagation Model), presently in operation by the US Air Force Weather Agency, provided predictions of shock arrival time (SAT) that were, respectively, 0.5 hours after and 3.7 hours before the observed arrival. The third model, HAFv.2 (Hakamada–Akasofu–Fry version 2.0) predicted a time 0.3 hours after the observed shock arrival time (14:37 UT, 15 July 2000). Of primary interest to this study is the third model, firstly in terms of its capability of propagating shocks through non-uniform solar wind conditions, and secondly, in terms of its ability to integrate multiple solar events and display them graphically along with the background solar wind. This latter capability was brought to bear on ten real-time-reported flares, some with CMEs (coronal mass ejections) that took place as companions to the Bastille flare during the period 7–15 July 2000. Some limited statistics are given regarding the three models' shock arrival prediction capability at Earth, as an extension of our earlier studies with this three model ensemble in the prediction of SAT. HAFv.2, however, was able to describe not only the ten events and their interaction as measured at Earth, but also at the spacecraft NEAR (orbiting the asteroid, Eros, at 1.8 AU), and CASSINI (en route, at 4.0 AU, to Saturn). Several important points are noted: (1) this epoch represents a small statistical sample that should be expanded; and (2) the three models, based on theory, empiricism, and simulations represent the state of the art that should presage a similar community process. This paper was presented earlier as an Invited Talk at the American Geophysical Union Fall Meeting, December 14–19, 2000, in San Francisco, CA, U.S.A.toward space weather objectives in the Sun-Earth domain. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014200719867  相似文献   
16.
We present the spectrum of the supernova SN1988e over the wavelength range 4750–9000 Å as recorded on 11 February, 1988. The spectrum was taken in one 2000 s exposure using the Faint Object Spectrograph on the 4.2 m William Herschel Telescope (WHT) at the Observatorio del Roque de los Muchachos.We conclude that SN1988e was a type I supernova, and that at the time of observation it had faded 7.5 mag from its predicted magnitude at maximum light. Spectra taken at such late stages in the light curve are comparatively rare, and are made possible only with the application of modern instrumentation.  相似文献   
17.
18.
The “Shiva Hypothesis”, in which recurrent, cyclical mass extinctions of life on Earth result from impacts of comets or asteroids, provides a possible unification of important processes in astrophysics, planetary geology, and the history of life. Collisions with Earth-crossing asteroids and comets ≥ a few km in diameter are calculated to produce widespread environmental disasters (dust clouds, wildfires), and occur with the proper frequency to account for the record of five major mass extinctions (from ≥ 108 Mt TNT impacts) and ~ 20 minor mass extinctions (from 107–108 Mt impacts) recorded in the past 540 million years. Recent studies of a number of extinctions show evidence of severe environmental disturbances and mass mortality consistent with the expected after-effects (dust clouds, wildfires) of catastrophic impacts. At least six cases of features generally considered diagnostic of large impacts (e.g., large impact craters, layers with high platinum-group elements, shock-related minerals, and/or microtektites) are known at or close to extinction-event boundaries. Six additional cases of elevated iridium levels at or near extinction boundaries are of the amplitude that might be expected from collision of relatively low-Ir objects such as comets. The records of cratering and mass extinction show a correlation, and might be explained by a combination of periodic and stochastic impactors. The mass extinction record shows evidence for a periodic component of about 26 to 30 Myr, and an ~ 30 Myr periodic component has been detected in impact craters by some workers, with recent pulses of impacts in the last 2–3 million years, and at ~ 35, 65, and 95 million years ago. A cyclical astronomical pacemaker for such pulses of impacts may involve the motions of the Earth through the Milky Way Galaxy. As the Solar System revolves around the galactic center, it also oscillates up and down through the plane of the disk-shaped galaxy with a half-cycle ~ 30±3 Myr. This cycle should lead to quasi-periodic encounters with interstellar clouds, and periodic variations in the galactic tidal force with maxima at times of plane crossing. This “galactic carrousel” effect may provide a viable perturber of the Oort Cloud comets, producing periodic showers of comets in the inner Solar System. These impact pulses, along with stochastic impactors, may represent the major punctuations in earth history.  相似文献   
19.
20.
K–Ar dating of illitic minerals is commonly used in studies of diagenetic series applied to oil prospecting. In spite of a great number of specialized papers, some problems remain unresolved. These are mostly due to a misunderstanding of the argon accumulation process during illitization. Criteria for identifying detrital–authigenic mineral mixtures, crystal ripening, fast precipitation or continuous nucleation‐growth processes are discussed using K–Ar data available in the literature. Using different parameters, such as Δage (ageK–Ar ? agestrati), Δcryst (diagenetic ageK–Ar ? agestrati) or Δfrac (ageK–Arfraction ?ageK–Arfinest), it is shown that the K–Ar age significance depends on the illite nucleation–growth processes. A ‘diagenetic age’ is obtained when these processes are rapid (the K2O accumulation period is shorter than 2σ). If lower than this value, the K–Ar ratio depends on the proportions of new and old particles, respectively, which are controlled by the relative rates of nucleation, crystal growth and ripening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号