首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   21篇
  国内免费   7篇
测绘学   41篇
大气科学   37篇
地球物理   147篇
地质学   163篇
海洋学   77篇
天文学   65篇
综合类   3篇
自然地理   46篇
  2023年   4篇
  2022年   4篇
  2021年   4篇
  2020年   10篇
  2019年   8篇
  2018年   13篇
  2017年   15篇
  2016年   18篇
  2015年   16篇
  2014年   21篇
  2013年   26篇
  2012年   19篇
  2011年   26篇
  2010年   27篇
  2009年   45篇
  2008年   21篇
  2007年   29篇
  2006年   35篇
  2005年   13篇
  2004年   17篇
  2003年   22篇
  2002年   17篇
  2001年   13篇
  2000年   15篇
  1999年   9篇
  1998年   8篇
  1997年   10篇
  1996年   12篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   10篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1975年   2篇
  1973年   3篇
  1969年   1篇
  1949年   1篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
81.
Land cover classification of mountainous environments continues to be a challenging remote sensing problem,owing to landscape complexities exhibited by the regi...  相似文献   
82.
An approach for nonstationary low‐flow frequency analysis is developed and demonstrated on a dataset from the rivers on the Loess Plateau of China. Nonstationary low‐flow frequency analysis has drawn significant attention in recent years by establishing relationships between low‐flow series and explanatory variables series, but few studies have tested whether the time‐varying moments of low flow can be fully described by the time‐varying moments of the explanatory variables. In this research, the low‐flow distributions are analytically derived from the 2 basic explanatory variables—the recession duration and the recession coefficient—with the assumption that the recession duration and recession coefficient variables follow exponential and gamma distributions, respectively; the derived low‐flow distributions are applied to test whether the time‐varying moments of explanatory variables can explain the nonstationarities found in the low‐flow variable. The effects of ecosystem construction measures, that is, check dam, terrace, forest, and grassland, on the recession duration and recession coefficient are further discussed. Daily flow series from 11 hydrological stations from the Loess Plateau are used and processed with a moving average technique. Low‐flow data are extracted following the pit under threshold approach. Six of the 11 low‐flow series show significant nonstationarities at the 5% significance level, and the trend curves of the moments of low flow are in close agreement with the curves estimated from the derived distribution with time‐dependent moments of the recession duration and time‐constant moments of the recession coefficient. It is indicated that the nonstationarity in the low‐flow distribution results from the nonstationarity in the recession duration in all 6 cases, and the increase in the recession duration is resulted from large‐scale ecosystem constructions rather than climate change. The large‐scale ecosystem constructions are found to have more influence on the decrease in streamflow than on the increase in watershed storage, thus resulting in the reduction of low flow. A high return period for the initial fixed design value decreases dramatically with an increasing recession duration.  相似文献   
83.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   
84.
85.
86.
SKB (Svensk Kärnbränslehantering AB) is responsible for all handling, transport and storage of the nuclear wastes outside the Swedish nuclear power stations. According to Swedish law, SKB is responsible for an R&D-programme needed to take care of the radwastes. The programme comprises, among others, a general supportive geo-scientific R&D and the Äspö Hard Rock Laboratory (HRL) for more in-situ specific tasks.

Sweden is geologically located in the Fennoscandian shield which is dominated by gneisses and granitoids of Precambrian age. The Swedish reference repository concept thus considers an excavated vault at ca. 500 m depth in crystalline rocks. In this concept (KBS-3), copper canisters with high level waste will be emplaced in deposition holes from a system of tunnels. Blocks of highly compacted swelling bentonite clay are placed in the holes leaving ample space for the canisters. At the final closure of the repository, the galleries are backfilled with a mixture of sand and bentonite. This repository design aims to make the disposal system as redundant as possible. Although the KBS-3 concept is the reference concept, alternative concepts and/or repository lay-outs are also studied. The main alternative, currently under development at SKB, is disposal in boreholes with depths of 4–5 km. The geoscientific research will to a great extent be guided by the demands posed by the performance and safety assessments, as well as the constuctability issues. Some main functions of the geological barrier are fundamental for the long-term safety of a repository. These are: bedrock mechanical stability, a chemically stable environment as well as a slow and stable groundwater flux. The main time-table for the final disposal of long-lived radioactive waste in Sweden foresees the final selection of the disposal system and site during the beginning of next decade.  相似文献   

87.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   
88.
Talus slopes are common places for debris storage in high-mountain environments and form an important step in the alpine sediment cascade. To understand slope instabilities and sediment transfers, detailed investigations of talus slope geomorphology are needed. Therefore, this study presents a detailed analysis of a talus slope on Col du Sanetsch (Swiss Alps), which is investigated at multiple time scales using high-resolution topographic (HRT) surveys and historical aerial photographs. HRT surveys were collected during three consecutive summers (2017–2019), using uncrewed aerial vehicle (UAV) and terrestrial laser scanning (TLS) measurements. To date, very few studies exist that use HRT methods on talus slopes, especially to the extent of our study area (2 km2). Data acquisition from ground control and in situ field observations is challenging on a talus slope due to the steep terrain (30–37°) and high surface roughness. This results in a poor spatial distribution of ground control points (GCPs), causing unwanted deformation of up to 2 m in the gathered UAV-derived HRT data. The co-alignment of UAV imagery from different survey dates improved this deformation significantly, as validated by the TLS data. Sediment transfer is dominated by small-scale but widespread snow push processes. Pre-existing debris flow channels are prone to erosion and redeposition of material within the channel. A debris flow event of high magnitude occurred in the summer of 2019, as a result of several convective thunderstorms. While low-magnitude (<5,000 m3) debris flow events are frequent throughout the historical record with a return period of 10–20 years, this 2019 event exceeded all historical debris flow events since 1946 in both extent and volume. Future climate predictions show an increase of such intense precipitation events in the region, potentially altering the frequency of debris flows in the study area and changing the dominant geomorphic process which are active on such talus slopes. © 2020 John Wiley & Sons, Ltd.  相似文献   
89.
This paper discusses tidal effects on an observation scheme to determine a point at the bottom of the sea by combining GPS and Sonar observations. For the purpose, three kinds of Earth tides are introduced (i.e., the crust tide, the equipotential surface point (ocean depth) tide, and the geoid tide). The corresponding mathematical expressions are derived to demonstrate the tidal effects on GPS and Sonar observations. The relations between the Earth tides are also discussed. Theoretical results imply a very interesting conclusion, namely that, for a local area, the static position of a point at the bottom of sea can be obtained by the dynamic observations without any tidal correction. Actually, the tidal effects cancel each other in the mentioned observation scheme. It therefore indicates that the observation scheme is free of tidal effects. Furthermore, we learned that the divergence caused by any error source on ocean surface is canceled and does not affect the final results. Therefore, to determine the position of a point at the bottom of sea, we need not consider any tidal effects.  相似文献   
90.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号