首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   17篇
地质学   27篇
海洋学   3篇
天文学   9篇
自然地理   4篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   6篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
11.
Mesozoic rift basins locally bounding metamorphic core complexes have been recognized in Transbaikalia and northern China. Numerous basement outcrops located between these two regions, in eastern Mongolia, are considered as pre-Palaeozoic in age. One of these, the Ereendavaa Range, appears as a gneissic core marked by amphibolite-facies metamorphic conditions. The range is overlain to the NW by the unmetamorphosed Mesozoic Onon Basin. Below the basin, the upper part of the range consists of a gently NW-dipping shear zone associated with top-to-the-NW motion. The structural pattern is consistent with syn-extensional exhumation of the range. Preliminary geochronological data indicate that the shear zone is late Jurassic to early Cretaceous in age, coeval with the Onon Basin. These new data from eastern Mongolia constitute a link between Transbaikalia and northern China, indicating that NW–SE extensional Mesozoic tectonics occurred throughout the entire region.  相似文献   
12.
Carbonates capping Neoproterozoic glacial deposits contain peculiar sedimentological features and geochemical anomalies ascribed to extraordinary environmental conditions in the snowball Earth aftermath. It is commonly assumed that post-snowball climate dominated by CO2 partial pressures several hundred times greater than modern levels, would be characterized by extreme temperatures, a vigorous hydrological cycle, and associated high continental weathering rates. However, the climate in the aftermath of a global glaciation has never been rigorously modelled. Here, we use a hierarchy of numerical models, from an atmospheric general circulation model to a mechanistic model describing continental weathering processes, to explore characteristics of the Earth system during the supergreenhouse climate following a snowball glaciation. These models suggest that the hydrological cycle intensifies only moderately in response to the elevated greenhouse. Indeed, constraints imposed by the surface energy budget sharply limit global mean evaporation once the temperature has warmed sufficiently that the evaporation approaches the total absorbed solar radiation. Even at 400 times the present day pressure of atmospheric CO2, continental runoff is only 1.2 times the modern runoff. Under these conditions and accounting for the grinding of the continental surface by the ice sheet during the snowball event, the simulated maximum discharge of dissolved elements from continental weathering into the ocean is approximately 10 times greater than the modern flux. Consequently, it takes millions of years for the silicate weathering cycle to reduce post-snowball CO2 levels to background Neoproterozoic levels. Regarding the origin of the cap dolostones, we show that continental weathering alone does not supply enough cations during the snowball melting phase to account for their observed volume.  相似文献   
13.
The Pasisar seismic acquisition system combines a source at the sea surface and a deep-towed single channel streamer. This unconventional device geometry reduces the width of the first Fresnel zone which increases the lateral resolution. However, the device acquisition geometry generates artifacts on seismic profiles and induces large incidence angles of the seismic signal. A specific processing sequence must be applied to the data to obtain a readable seismic section. Penetration of the seismic signal depends on the energy of the signal reaching the seafloor and on its incidence angle. Because of smaller source energy, 800 Joules Sparker data cannot be acquired in water depth larger than 1500 m for example, whereas there is no depth limit for the use of this system with air gun sources. Differential acoustic absorption of seismic frequencies (below 1000 Hz) in the water column is negligible when compared with wave fronts expansion. Thus, the horizontal resolution of any seismic system strongly depends on the frequency spectrum of the seismic source and on the travel distances. Pasisar and conventional seismic profiles being usually simultaneously recorded, we illustrate the interest of using a hybrid seismic device by comparing horizontal resolutions as well as signal-to-noise ratio obtained with both the Pasisar and conventional systems. In addition, by carefully picking time arrivals of a reflection on simultaneously recorded surface and deep-towed seismic records, it is possible to estimate the average interval seismic velocity. We present the simplified example of a horizontal reflector.  相似文献   
14.
15.
16.

Kimberlites from the Diavik and Ekati diamond mines in the Lac de Gras kimberlite field contain abundant large (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) crystals. We present the first extensive mineral chemical dataset for these megacrysts from Diavik and Ekati and compare their compositions to cratonic peridotites and megacrysts from the Slave and other cratons. The Diavik and Ekati Cr-diopside and Cr-pyrope megacrysts are interpreted to belong to the Cr-rich megacryst suite. Evidence for textural, compositional, and isotopic disequilibrium suggests that they constitute xenocrysts in their host kimberlites. Nevertheless, their formation may be linked to extensive kimberlite magmatism and accompanying mantle metasomatism preceding the eruption of their host kimberlites. It is proposed that the formation of megacrysts may be linked to failed kimberlites. In this scheme, the Cr-rich megacrysts are formed by progressive interaction of percolating melts with the surrounding depleted mantle (originally harzburgite). As these melts percolate outwards, they may contribute to the introduction of clinopyroxene and garnet into the depleted mantle, thereby forming lherzolite. This model hinges on the observation that lherzolitic clinopyroxenes and garnets at Lac de Gras have compositions that are strikingly similar to those of the Cr-rich megacrysts, in terms of major and trace elements, as well as Sr isotopes. As such, the Cr-rich megacrysts may have implications for the origin of clinopyroxene and garnet in cratonic lherzolites worldwide.

  相似文献   
17.
18.
Several methods were employed in the Ardennian rivers (Belgium) to determine the depth of the active layer mobilized during floods and to evaluate the bedload discharge associated with these events. The use of scour chains has shown that the depth of the active layer is systematically less than the b‐axis of the average particle size (D50) of the elements which compose the surface layer of the riffles. This indicates that only a partial transport exists during low magnitude floods. The bedload discharge has been evaluated by combining data obtained using the scour chains technique and the distance covered by tracers. Quantities of sediment transported during frequent floods are relatively low (0·02 t km–2) due to the armour layer which protects the subsurface material. These low values are also related to the fact that the distance calculated for mobilized bedload only applies to tracers fitted with PIT (passive integrated transponder)‐tags (diameter > 20 mm), whereas part of the bedload discharge is composed of sand and fine gravel transported over greater distances than the pebbles. The break‐up of the armour layer was observed only once, for a decennial discharge. During this event, the bedload discharge increased considerably (2 t km–2). The use of sediment traps, data from dredging and a Helley–Smith sampler confirm the low bedload transport in Ardennian rivers in comparison to the bedload transport in other geomorphological contexts. This difference is explained by the presence of an armoured layer but also by the imbricated structures of flat bed elements which increase the resistance to the flow. Finally, the use of the old iron industry wastes allowed to quantify the thickness of the bed reworked over the past centuries. In the Lembrée River, the river‐bed contains slag elements up to a depth of about 50 cm, indicating that exceptional floods may rework the bed to a considerable depth. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
19.
The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn–Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn–Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ?c? axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ?c? axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE–SW elongation interpreted as the global circulation direction and a NW–SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号