首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11701篇
  免费   2244篇
  国内免费   3019篇
测绘学   719篇
大气科学   263篇
地球物理   2074篇
地质学   11962篇
海洋学   840篇
天文学   97篇
综合类   320篇
自然地理   689篇
  2024年   74篇
  2023年   319篇
  2022年   656篇
  2021年   681篇
  2020年   805篇
  2019年   894篇
  2018年   799篇
  2017年   1277篇
  2016年   1167篇
  2015年   1202篇
  2014年   1163篇
  2013年   1317篇
  2012年   1166篇
  2011年   1045篇
  2010年   627篇
  2009年   764篇
  2008年   436篇
  2007年   655篇
  2006年   537篇
  2005年   321篇
  2004年   157篇
  2003年   167篇
  2002年   135篇
  2001年   106篇
  2000年   95篇
  1999年   189篇
  1998年   43篇
  1997年   20篇
  1996年   17篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   10篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   42篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1958年   9篇
  1957年   3篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
The function of a submarine conduit under typhoon conditions is examined. The study site is the Kao-ping river, shelf, and submarine canyon (KPRSC) system located off southern Taiwan on a wave-dominated microtidal coast. The head of the canyon is located approximately 1 km off the river mouth. Two comprehensive 1-month field experiments were carried out in 2000 and 2002 during the flood season of the river. Both experiments encountered typhoons that generated significant river discharge and wave resuspension events. Particle samples collected in 2000 by sediment-traps were analyzed for coarse fraction by the wet sieving method. Among the coarse fraction, foraminiferal species and their abundance were recorded as a tracer for biogenic particles of marine origin. Stable isotopes of carbon (δ13C) of organic particles of sediment-trap samples were analyzed as a tracer for particles of terrestrial origin. All the measured flow and particle concentration records were analyzed by conventional time-series analytical methods. Simultaneously observed records of suspended sediment concentration at the river mouth and the volume concentration of suspended particles near the canyon floor were compared. Instantaneous flux and cumulative transport of suspended particles near the canyon floor were estimated during the deployment period. Results show that Kao-ping Submarine Canyon is a multi-level and process-dependant two-way conduit for particles of terrestrial and marine origins. In general, terrestrial signals are stronger than the marine signals in sediment-trap samples near the head of the canyon. During typhoon events, in the early distal phase of their influence nonlithogenic and biogenic marine sources are enhanced; in the later proximal phase signals of locally generated terrestrial lithogenic sources are enhanced. An episode of momentary downcanyon flushing of suspended particles near the canyon floor is observed during one typhoon occurrence. This flushing suggests nondeposition during the typhoon at the locale of deployment despite increased input of particles to the canyon floor. It also suggests a mechanism by which turbidity currents could be triggered. Yet, this flushing phenomenon is not observed in another typhoon occurrence, suggesting it is not universal in the canyon's response to the typhoon.  相似文献   
32.
《Marine Geology》2005,216(3):145-154
The Eastern Basin in the Ross Sea (Antarctica) contains a sedimentary sequence that is a direct record of advance and retreat of the West Antarctic Ice Sheet.We analyzed a sedimentary section ranging from the upper Miocene to present.The joint tomographic inversion of refracted and reflected arrivals of pre-stack multi-channel seismic data revealed in this area the presence of layers with anomalous high velocity. These anomalies are correlated with sediments that were eroded and compacted by the load of the West Antarctic Ice Sheet during its expansion on the continental shelf.The deepest and stronger velocity anomaly correspond to a basin-wide seismic unconformity (RSU2, Late Miocene–Early Pliocene in age). This anomaly is interpreted as evidence of a major advance of the West Antarctic ice sheet on the continental shelf that resulted in high velocity and low porosity in sediment immediately above the unconformity.  相似文献   
33.
Bathymetry of the Tonga Trench and Forearc: a map series   总被引:1,自引:0,他引:1  
Four new bathymetric maps of the Tonga Trench and forearc between 14 °S and 27 °S display the important morphologic and structural features of this dynamic convergent margin. The maps document a number of important geologic features of the margin. Major normal faults and fault lineaments on the Tonga platform can be traced along and across the upper trench slope. Numerous submarine canyons incised in the landward slope of the trench mark the pathways of sediment transport from the platform to mid- and lower-slope basins. Discontinuities in the trench axis and changes in the morphology of the landward slope can be clearly documented and may be associated with the passage and subduction of the Louisville Ridge and other structures on the subducting Pacific Plate. Changes in the morphology of the forearc as convergence changes from normal in the south to highly-oblique in the north are clearly documented. The bathymetric compilations, gridded at 500- and 200-m resolutions and extending along 500 km of the landward trench slope and axis, provide complete coverage of the outer forearc from the latitude of the Louisville Ridge-Tonga Trench collision to the northern terminus of the Tonga Ridge. These maps should serve as a valuable reference for other sea-going programs in the region, particularly the Ocean Drilling Program (ODP) and the National Science Foundation MARGINS initiative.  相似文献   
34.
《Marine Geology》2006,225(1-4):103-127
This paper examines the spatial and temporal variability in the volumetric sediment balance of Allen Creek marsh, a macro-tidal salt marsh in the Bay of Fundy. The volumetric balance was determined as the balance of inputs of sediments and organic matter via accretion on the marsh surface and outputs of sedimentary material primarily due to erosion of the marsh margin. Changes in marsh surface elevation were measured at 20 buried plates and 3 modified sediment elevation tables from 1996–2002, and detailed margin surveys were conducted in 1997, 1999 and 2001 using a differential global positioning system. Changes in surface area were calculated using GIS overlay analysis and used in conjunction with accretion and erosion data to derive volumetric estimates of gains and losses of sedimentary material in the marsh system.Currently the volumetric sediment balance at Allen Creek marsh is positive. However the processes of erosion and accretion demonstrate seasonal, annual and spatial variability. Inputs to the system include deposition on the marsh surface from sediment laden waters and from ice rafting of sediments. Sediment is deposited onto the marsh surface year round, even during the winter when vegetation cover is sparse, and the amount of deposition in general is not significantly correlated with the frequency of tidal inundations. Based on the data from 1996 to 2002, the mid and high marsh zones experience mean accretion rates of approximately 1.4 cm year 1 whereas accretion rates in the low marsh region are statistically significantly lower (0.8 cm year 1). The absolute amount of accretion varies between seasons and from year to year. The main loss to the marsh is through erosion of the marsh margin cliffs which can remove a comparatively large volume of sedimentary material in one mass wasting event and which also decreases the vegetated surface area available for deposition from sediment laden waters. The volume of material removed from the marsh margin almost tripled between 1997 (169 m3) and 2001 (502 m3) following breaching of the side of a tidal creek channel, altering the patterns of margin erosion and deposition in the marsh system. During this time, however, other sheltered areas of the marsh system, such as along the tidal creek banks, showed evidence of new vegetation growth, increasing the amount of vegetated surface area available for deposition.The processes of erosion and deposition on the marsh surface exhibit considerable spatial variability, with different regions of the marsh being more or less sensitive to seasonal variability in the dominant controls influencing sediment deposition and erosion in this system, namely wave activity, vegetation, ice and water depths. A key factor in predicting how a marsh will evolve and respond to a number of different controls, e.g. sea-level rise or reduced sediment supply, is to quantify both accretion of the marsh surface and erosion of the marsh margin, evaluating the marsh system as a volumetric whole. This study demonstrates that a marsh system should be assessed in three dimensions rather than simply as a surface of accumulation. This is particularly important for open coastal marshes exposed to the erosive action of waves.  相似文献   
35.
《Marine Geology》2006,225(1-4):23-44
The morphodynamics of inlets and ebb-tidal deltas reflect the interaction between wave and tidal current-driven sediment transport and significantly influence the behaviour of adjacent shorelines. Studies of inlet morphodynamics have tended to focus on sand-dominated coastlines and reference to gravel-dominated or ‘gravel-rich’ inlets is rare. This work characterises and conceptualises the morphodynamics of a meso-tidal sand–gravel inlet at the mouth of the Deben estuary, southeast England. Behaviour of the inlet and ebb-tidal delta over the last 200 yr is analysed with respect to planform configuration and bathymetry. The estuary inlet is historically dynamic, with ebb-tidal shoals exhibiting broadly cyclic behaviour on a 10 to 30 yr timescale. Quantification of inlet parameters for the most recent cycle (1981–2003) indicate an average ebb delta volume of 1 × 106 m3 and inlet cross-sectional area of 775 m2. Bypassing volumes provide a direct indicator of annual longshore sediment transport rate over this most recent cycle of 30–40 × 103 m3 yr 1. Short-term increases in total ebb-tidal delta volume are linked to annual variability in the north to northeasterly wind climate. The sediment bypassing mechanism operating in the Deben inlet is comparable to the ‘ebb delta breaching’ model of FitzGerald [FitzGerald, D.M., 1988. Shoreline erosional–depositional processes associated with tidal inlets, in: Aubrey, D.G., Weishar, L. (Ed.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. Springer-Verlag Inc., New York, pp. 186–225.], although the scales and rates of change exhibited are notably different to sand-dominated systems. A systematic review of empirical models of sand-dominated inlet and ebb-tidal delta morphodynamics (e.g. those of [O'Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering, 1, 738–739.; Walton, T.L., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. Proceedings of 15th Coastal Engineering Conference, 1919–1937.; Gaudiano, D.J., Kana, T.W., 2001. Shoal bypassing in mixed energy inlets: geomorphic variables and empirical predictions for nine South Carolina inlets. J. Coast. Res., 17, (2), 280–291.]) shows the Deben system to be significantly smaller yet characterised by a longer bypassing cycle than would be expected for its tidal prism. This is attributed to its coarse-grained sedimentology and the lower efficiency of sediment transporting processes.  相似文献   
36.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   
37.
In this paper we examine the use of bathymetric sidescan sonar for automatic classification of seabed sediments. Bathymetric sidescan sonar, here implemented through a small receiver array, retains the advantage of sidescan in speed through illuminating large swaths, but also enables the data gathered to be located spatially. The spatial location allows the image intensity to be corrected for depth and insonification angle, thus improving the use of the sonar for identifying changes in seafloor sediment. In this paper we investigate automatic tools for seabed recognition, using wavelets to analyse the image of Hopvågen Bay in Norway. We use the back-propagation elimination algorithm to determine the most significant wavelet features for discrimination. We show that the features selected present good agreement with the grab sample results in the survey under study and can be used in a classifier to discriminate between different seabed sediments.  相似文献   
38.
《Marine Geology》2006,225(1-4):247-263
Modal analyses of 31 sand samples collected by piston coring document variations in sediment composition along and across the developing collision zone off southern Taiwan and help constrain sediment transport paths and, by inference, of sediment sources. Overall, sand composition from this region is dominated by lithic-fragment populations, with a QtFL average of Qt27F21L52. Three geographic domains are based on morphotectonics and variations in sand composition: (1) South China Sea and the adjacent slope of the accretionary prism; (2) suture zone south of southern Taiwan and north of the Luzon forearc; and (3) the Luzon forearc basin (North Luzon Trough) and immediate adjacent slopes. Sands from the accretionary prism and the suture zone contain subequal amounts of sedimentary and metamorphic lithic fragments (Ls51Lv5Lm45 and Ls47Lv5Lm48), respectively, whereas sands from the forearc basin are dominated by volcanic lithic fragments (Ls29Lv49Lm22). In addition, compositions of individual sand beds vary dramatically in the forearc basin. This heterogeneity indicates that sediments from different sources have been deposited sequentially, but do not typically mix during transport and deposition. Similar, but less dramatic, within-core variations occur over the accretionary prism.The major sediment input for the accretionary prism is from western Taiwan and is dominated by sedimentary and low-grade metamorphic lithic fragments. There appears to be a second sediment source, however, from southeastern China. This implies that a significant amount of sediment is the input from China to this region. The major component of sands in the suture zone is derived from Taiwan, but medium-grade metamorphic lithic fragments are rather sparse in these sands, considering the extensive and high-relief exposures of metamorphic rocks on the island of Taiwan. The major source of sands in the forearc basin is the active volcanoes of the Batan islands. Episodically, minor components appear to be fed to the forearc basin from the arcward slope of the accretionary prism, presumably by submarine mass wasting. This observation provides support for the hypothesized olistostromal origin for the Lichi Mélange of eastern Taiwan.  相似文献   
39.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   
40.
Marine manganese nodules and crusts, when processed, yield tailings which may be utilized for environmental and economic benefit. The key to the reasonable and effective utilization of these tailings lies in making a systematic appraisal of their composition and properties. This article gives an introduction to the investigation of manganese tailings properties. The tailings have a high iron and/or manganese content, high surface area, high porosity, and fine grain size. Some tailings have a high rare earth element content which is valuable. They may also have high SO3, arsenic, and uranium contents which are harmful. Depending on the process used to produce the tailings, there will likely be some differences in chemical composition, mineral assemblages, surface area and adsorption capability, pore diameter and volume, density and pH. In assigning potentially beneficial applications for these tailings, these differences should be taken into account to optimize utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号