首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   171篇
  国内免费   152篇
测绘学   52篇
大气科学   67篇
地球物理   167篇
地质学   730篇
海洋学   87篇
天文学   79篇
综合类   33篇
自然地理   68篇
  2024年   1篇
  2023年   6篇
  2022年   17篇
  2021年   17篇
  2020年   21篇
  2019年   32篇
  2018年   22篇
  2017年   30篇
  2016年   82篇
  2015年   53篇
  2014年   64篇
  2013年   68篇
  2012年   78篇
  2011年   66篇
  2010年   40篇
  2009年   68篇
  2008年   81篇
  2007年   60篇
  2006年   47篇
  2005年   68篇
  2004年   46篇
  2003年   40篇
  2002年   46篇
  2001年   36篇
  2000年   37篇
  1999年   30篇
  1998年   27篇
  1997年   22篇
  1996年   16篇
  1995年   13篇
  1994年   11篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
排序方式: 共有1283条查询结果,搜索用时 31 毫秒
991.
Following the eruption of January 1992, episodes of lava dome growth accompanied by generation of dome-collapse nuées ardentes occurred in 1994–1998. In addition, nuées ardentes were generated by fountain-collapse in January 1997, and the 1998 events also suggest an explosive component. Significant tilt and seismic precursors on varying time scales preceded these events. Deformation about the summit has been detected by electronic tiltmeters since November 1992, with inflation corresponding generally to lava dome growth, and deflation (or decreased inflation) corresponding to loss of dome mass. Strong short-term (days to weeks) accelerations in tilt rate and seismicity occurred prior to the major nuées ardentes episodes, apart from those of 22 November 1994 which were preceded by steadily increasing tilt for over 200 days but lacked short-term precursors. Because of the combination of populated hazardous areas and the lack of an issued warning, about 100 casualties occurred in 1994. In contrast, the strong precursors in 1997 and 1998 provided advance warning to observatory scientists, enabled the stepped raising of alert levels, and aided hazard management. As a result of these factors, but also the fortunate fact that the large nuées ardentes did not quite descend into populated areas, no casualties occurred. The nuée ardente episode of 1994 is interpreted as purely due to gravitational collapse, whereas those of 1997 and 1998 were influenced by gas-pressurization of the lava dome.  相似文献   
992.
We have used two techniques (i.e. K–Ar and 40Ar/39Ar) on Icelandic obsidian samples to produce and more specially to estimate the quality and accuracy of the ages that can be obtained. Following a meticulous protocol, we were able to date six rhyolitic eruptions with an accuracy 7 to 40 times better than those obtained previously. Among these six rhyolites are the first published K–Ar and 40Ar/39Ar ages of Krafla.The combined K–Ar and 40Ar/39Ar approach produces not only highly precise but also accurate ages. Such high precision makes it possible to produce accurate reconstructions of ice thickness at a given location and time, to test whether there was a possible link between deglaciation and rhyolitic volcanism onset in Iceland, and to explore other possible applications of the 40Ar/39Ar dating method to paleo-environmental and paleo-climatic reconstruction at Iceland's latitude.Then, we investigate, by combining geochemistry (i.e. determination of major and trace element composition) and geochronology (i.e. dating of rhyolitic eruptions via K–Ar and 40Ar/39Ar dating) for a number of Icelandic rhyolitic volcanoes whose activity could be recorded in North Atlantic sedimentary cores as well as in Arctic ice. The aim of this approach is to provide new independent anchors and correlations between climate records. Of the six dated eruptions, we propose that one is record in North Atlantic sediments, the Loðmundur eruption that constitutes one of the Kerlingarfjöll tuyas, which we date at 189.9 ± 1.1 ka and assume to be the source of the tephra recognized in core MD04-2822 at a depth of 3630–3631 cm.  相似文献   
993.
Near soil surface characteristics change significantly with vegetation restoration, and thus, restoration strategies likely affect soil erodibility. However, few studies have been conducted to quantify the effects of vegetation restoration strategies on soil erodibility in regions experiencing rapid vegetation restoration. This study was conducted to evaluate the effects of vegetation restoration strategies on soil erodibility, reflected by soil cohesion (Coh), penetration resistance (PR), saturated conductivity (Ks), number of drop impacts (NDI), mean weight diameter of soil aggregates (MWD), and soil erodibility K factor on the Loess Plateau. One slope farmland and five 25-year-restored lands covered by old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust were selected as test sites. The old world bluestem was restored via natural succession, while the other four lands were restored by artificial planting. A comprehensive soil erodibility index (CSEI) was produced by a weighted summation method to quantify the effects of vegetation restoration strategies on soil erodibility completely. The results showed that Coh, Ks, NDI, and MWD of the five restored lands were greater than those of the slope farmland. However, the PR and K of the five restored lands were less than those of the slope farmland. CSEI varied greatly under different restoration strategies, from 1 to 0.214. Compared with the control, these indices decreased on average by 68.2%, 78.6%, 72.7%, 75.8%, and 62.8% for old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust, respectively. The variation in soil erodibility was significantly influenced by biological crust thickness, bulk density, organic matter content, plant litter density, and root mass density. Shrub-lands via artificial planting, especially korshinsk peashrub, were considered the most effective restoration strategies to reduce soil erodibility on the Loess Plateau. The results are helpful for selecting vegetation restoration strategies and asking their benefits in controlling soil erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   
994.
A reformed numerical model based on the “one-line theory” for beach deformation is presented. In this model, the change of beach slope during coastline procession is considered.A wave numerical model combined with wave refraction, diffraction and reflection is used to simulate wave climate to increase numerical accuracy.The results show that the numerical model has a good precision based on the adequate field data. The results can be applied to practical engineering.  相似文献   
995.
A number of carbonate buildups in north Co. Dublin, long assigned to the late Viséan (Asbian), are shown on the basis of coral, foraminiferal and algal evidence to be early to mid-Viséan (late Chadian to Holkerian) in age. They are equivalent in age to beds ranging from the upper part of the Lane Formation to the top of the Holmpatrick Formation. The buildups are poorly exposed and relatively small, probably only a few tens of metres across at most. Buildup sediments are massive to crudely bedded and dominated by peloidal, clotted and dense uniform micrites displaying lime mudstone and bioclastic wackestone textures. Dasycladacean algae are common in the buildups and cryptalgal fabrics are locally important. Cavities in the buildups are generally small (< 5 cm) and lined with inclusion-rich radiaxial calcite cements. Micritization of bioclasts and cements is ubiquitous. Enclosing off-buildup limestones are skeletal and intraclastic grainstones possessing sedimentary structures indicative of deposition in moderate to high energy environments. Fossil and petrographic evidence from the buildups also indicate a shallow water origin for the north Co. Dublin buildups. Compared with the slightly older Tournaisian (Courceyan to early Chadian) Waulsortian buildups which developed extensively in the Dublin Basin, these younger platform buildups are smaller and more isolated and possess a diverse suite of algal components and cryptalgal fabrics. Nevertheless, components in the north Co. Dublin buildups most closely resemble the shallowest phase D Waulsortian buildups, particularly in the presence of abundant peloids and micritized cements. The north Co. Dublin buildups developed on a carbonate platform (the Milverton Platform), adjacent to the Dublin Basin, whereas the Waulsortian developed in a deeper ramp setting. Following the demise of the Waulsortian in early Chadian time carbonate buildups established themselves on the shallow platforms. It is suggested that the microbial communities responsible for these buildups may have ‘evolved’ from older phase D Waulsortian communities and that he north Co. Dublin platform buildups represent the shallow water end of a spectrum of Viséan buildups.  相似文献   
996.
Tsunami boulders deposited along the coast constitute important geological evidence for paleotsunami activity. However, boulders can also be deposited by large storm waves. Although several sedimentological and theoretical methods have been proposed to differentiate tsunami and storm wave affected boulders, no appropriate numerical method exists for their differentiation. Therefore, we developed a new numerical scheme to differentiate tsunami and storm wave boulders for coastal boulders on Ishigaki Island, Japan. In this area, tsunami and storm waves have emplaced numerous boulders on the reef and the coast. By conducting numerical calculations of storm waves in this region, we estimated the size of a storm wave that can explain the maximum clast size distribution of boulders on the reef. Consequently, we showed that a wave with a combination of 8 m in initial wave height and 10 s period can satisfy the above conditions when we assume mean sea level. In contrast to the boulders on the reef, all boulders deposited along the shore are heavier than the calculated possible maximum clast size distribution by the storm wave. Therefore, we confirmed these boulders as being of tsunami origin. Results of previous studies showed that they were most likely deposited or reworked by the 1771 Meiwa tsunami. Then, using the tsunami boulders, we numerically estimated the wave period and amplitude of the 1771 Meiwa tsunami, which should have had a 4–5 min period and 5.6–5.9, 6.3–7.0 m amplitude, respectively. Using the proposed scheme, it is possible to differentiate tsunami and storm wave boulders and estimate the size of past storm waves and tsunami waves, although it is noteworthy that there are exceptions for which the scheme cannot be applied.  相似文献   
997.
Mesozoic volcanic rocks are widespread throughout the Great Xing'an Range of northeastern China. However, there has been limited investigation into the age and petrogenesis of the Mesozoic volcanics in the eastern Great Xing'an Range. According to our research, the volcanic rocks of the Dayangshu Basin, eastern Great Xing'an Range are composed mainly of trachybasalt, basaltic andesite, and basaltic trachyandesite, with minor intermediate–basic pyroclastic rocks. In this study, the geochemistry and geochronology of the Mesozoic volcanic rocks are presented in order to discuss the petrogenesis and tectonic setting of the Ganhe Formation in the Dayangshu Basin. Zircon U–Pb dating by laser ablation inductively coupled plasma–mass spectrometry indicates that the Mesozoic lavas formed during the late Early Cretaceous (114.3–108.8 Ma). This suite of rocks exhibits a range of geochemical signatures indicating subduction‐related genesis, including: (i) calc‐alkaline to high‐K calc‐alkaline major element compositions; (ii) enrichment of large ion lithophile elements (e.g. Rb, Ba, K) and light rare earth elements (LREEs/HREEs =7.33–9.85); and (iii) weak depletion in high field strength elements (e.g. Nb, Ta, Ti). Furthermore, Sr–Nd–Pb isotopic data yield initial 87Sr/86Sr values of 0.70450–0.70463, positive εNd(t) values of +1.8 to +3.3, and a mantle‐derived lead isotope composition. Combined with the regional tectonic evolution, the results of this study suggest that the Ganhe Group lavas are derived from decompression melting of a metasomatized (enriched) lithospheric mantle, related to asthenospheric upwelling, which resulted from lithospheric mantle delamination and produced extension of the continental margin following the subduction of the Paleo‐Pacific Plate.  相似文献   
998.
The tectonic setting of the late mesozoic of South China is in a debate between two schools of thought: an intra‐continental rift zone along a passive continental margin or active rifting associated with subduction of the paleo‐Pacific Plate. In this study, we present new sensitive high‐resolution ion microprobe (SHRIMP) U‐Pb zircon ages, along with geochemical data of three basic dikes that cross‐cut the Dexing porphyry copper deposit. The deposit is the largest of its kind in eastern China and part of large scale mineralization associated with Mesozoic magmatic activity in the area. Our results indicate that the dikes were emplaced in the Late Jurassic with an average U‐Pb age of 153.5 ± 2.4 Ma. The intrusions have bulk εNd(t) of ca +0.7 and zircon εHf(t) value of +1.54 to +6.92. Based on relatively enriched light rare earth elements (LREE) and depleted high‐field‐strength elements (HFSE) abundances with pronounced negative Ta–Nb, Hf–Zr and Ti anomalies in multi‐element diagrams, we propose that these dikes were derived from a subduction‐modified lithospheric mantle source. The variability in Hf isotopes identifies some degree of crustal contaminations. Our data support a scenario with a back‐arc extensional setting or an intra‐arc rift environment associated with the westward subduction of the paleo‐Pacific Plate at or prior to the late Jurassic as the most likely cause for these subduction signatures.  相似文献   
999.
The Permian–Triassic high pressure metamorphism and potassic magmatism in central Korea attest to the extension of the Dabie‐Sulu collision belt in central‐eastern China towards the Korean Peninsula and possibly the Japanese Islands. We present major and trace element and Sr–Nd isotope data for a ca. 230 Ma monzodiorite pluton emplaced in the Goesan area, central Okcheon belt, Korea. This pluton shows geochemical features comparable with those of the coeval monzonite–syenite–gabbro–mangerite suite documented recently in the Gyeonggi massif. The metaluminous and alkali–calcic signatures of the Goesan intrusives correspond to the Caledonian‐type post‐orogenic granitoids. The K2O/Na2O ratios of all analyzed samples are greater than 1, and are not correlative with their SiO2 contents. The enrichment of both large‐ion‐lithophile elements and highly compatible elements in the Goesan pluton is probably indicative of metasomatized mantle origin. The elemental fractionation in the source region must have occurred in the distant past, possibly the Paleoproterozoic, to generate significantly negative εNd(t) values (< –16). Chondrite‐normalized rare earth element patterns as well as Rb/Sr and Ba/Rb ranges suggest that the source consists of amphibole‐bearing rocks. Progressive decreases in negative Eu anomaly and Ba, Sr, Ni, Cr and V contents with increasing SiO2 contents reflect an important role of plagioclase, biotite and hornblende for the fractionation process. Zr is undersaturated in the potassic, metaluminous melt. The initial Sr–Nd isotopic compositions of the samples are correlated with their SiO2 contents, substantiating a role of crustal assimilation during the magmatic differentiation. The Sr–Nd elemental and isotopic modeling suggests that the Goesan pluton was initially slightly heterogeneous in its isotopic composition, and underwent concurrent assimilation and fractional crystallization. The occurrence of the Goesan pluton provides further evidence corroborating the amalgamation of allochthonous terranes within the Okcheon belt during the Permian–Triassic collisional orogeny.  相似文献   
1000.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号