首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23242篇
  免费   3672篇
  国内免费   5637篇
测绘学   1527篇
大气科学   6364篇
地球物理   3469篇
地质学   8892篇
海洋学   2590篇
天文学   5313篇
综合类   1194篇
自然地理   3202篇
  2024年   138篇
  2023年   318篇
  2022年   729篇
  2021年   888篇
  2020年   939篇
  2019年   1056篇
  2018年   795篇
  2017年   951篇
  2016年   955篇
  2015年   1056篇
  2014年   1513篇
  2013年   1767篇
  2012年   1549篇
  2011年   1663篇
  2010年   1481篇
  2009年   1924篇
  2008年   1879篇
  2007年   1925篇
  2006年   1676篇
  2005年   1491篇
  2004年   1226篇
  2003年   1072篇
  2002年   880篇
  2001年   771篇
  2000年   736篇
  1999年   600篇
  1998年   499篇
  1997年   373篇
  1996年   293篇
  1995年   242篇
  1994年   217篇
  1993年   193篇
  1992年   134篇
  1991年   94篇
  1990年   76篇
  1989年   69篇
  1988年   86篇
  1987年   34篇
  1986年   43篇
  1985年   54篇
  1984年   37篇
  1983年   25篇
  1982年   27篇
  1981年   15篇
  1980年   18篇
  1979年   7篇
  1978年   8篇
  1977年   19篇
  1976年   2篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
3.
This article borrows a statistical method from physical geography—topographical prominence—to suggest a new technique for measuring the relative significance or rank of population centers. Unlike raw population measures, prominence gives consideration to both the spatial intensity of concentrated population areas as well as the spatial dependence or independence of neighboring settlement clusters in relation to one another. We explain how to apply the topographic prominence calculation method to gridded population data and examine its practical utility through case studies of several U.S. states. We then discuss some ways in which parametric choices about point-to-surface transformations can result in considerably different outcomes and offer further suggestions for conceptualizing and measuring population center significance.  相似文献   
4.
Li  Wei  Li  Xiaoyan  Huang  Yongmei  Wang  Pei  Zhang  Cicheng 《地理学报(英文版)》2019,29(9):1507-1526

In many arid ecosystems, vegetation frequently occurs in high-cover patches interspersed in a matrix of low plant cover. However, theoretical explanations for shrub patch pattern dynamics along climate gradients remain unclear on a large scale. This context aimed to assess the variance of the Reaumuria soongorica patch structure along the precipitation gradient and the factors that affect patch structure formation in the middle and lower Heihe River Basin (HRB). Field investigations on vegetation patterns and heterogeneity in soil properties were conducted during 2014 and 2015. The results showed that patch height, size and plant-to-patch distance were smaller in high precipitation habitats than in low precipitation sites. Climate, soil and vegetation explained 82.5% of the variance in patch structure. Spatially, R. soongorica shifted from a clumped to a random pattern on the landscape towards the MAP gradient, and heterogeneity in the surface soil properties (the ratio of biological soil crust (BSC) to bare gravels (BG)) determined the R. soongorica population distribution pattern in the middle and lower HRB. A conceptual model, which integrated water availability and plant facilitation and competition effects, was revealed that R. soongorica changed from a flexible water use strategy in high precipitation regions to a consistent water use strategy in low precipitation areas. Our study provides a comprehensive quantification of the variance in shrub patch structure along a precipitation gradient and may improve our understanding of vegetation pattern dynamics in the Gobi Desert under future climate change.

  相似文献   
5.
随着海洋生态系统模型的发展,生态变量增多,众多生物过程参数量值的确定成为制约生态环境模拟的瓶颈问题,生态系统结构区域性要求模型中的生态参数具有区域差异。为探究不同海区的关键参数及参数敏感度的空间差异,本研究在渤、黄海建立了ROMS-CoSiNE物理–生物耦合的高分辨率生态系统模型,并对13种生态参数的敏感度空间分布进行分析。结果表明:南黄海中部与渤海及近岸海域的敏感度差异较大。渤海敏感度最大的参数为决定光合速率的浮游植物P-I曲线初始斜率,其次为浮游动物捕食半饱和常数和浮游动物最大捕食率。而南黄海中部敏感度最大的参数为浮游动物最大捕食率,其次为浮游植物死亡率和浮游植物P-I曲线初始斜率。结合敏感度分布及浮游植物生物量收支得出,渤海水体透明度较南黄海偏低、浮游植物生长光限制较强,是引起浮游植物P-I曲线初始斜率敏感度在渤海高于黄海的主要原因。浮游动物最大捕食率及浮游植物死亡率的敏感度空间差异,受渤、黄海浮游植物生物量差异的影响,与生态系统中的高度非线性特征有关。  相似文献   
6.
利用鄂尔多斯地块及其周缘1970~2014年的垂直形变速率场资料,借助负位错反演研究该区域长期应变积累。结果表明,地块东北缘山西断陷带中北段年均能量积累增量、剪应力强度都较高,西南缘六盘山断裂与渭河断裂西段次之;山西断陷带中南段至晋陕交界处年均剪应力强度较高且显示一定程度的能量积累;西秦岭构造区尤其西秦岭北缘断裂西段、晋冀蒙交界区也反映一定程度的能量积累特性。  相似文献   
7.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
8.
The Atlantic inflow in the Fram Strait(78°50′N) has synoptic scale variability based on an array of moorings over the period of 1998–2010. The synoptic scale variability of Atlantic inflow, whose significant cycle is 3–16 d, occurs mainly in winter and spring(from January to April) and is related with polar lows in the Barents Sea. On the synoptic scale, the enhancement(weakening) of Atlantic inflow in the Fram Strait is accompanied by less(more)polar lows in the Barents Sea. Wind stress curl induced by polar lows in the Barents Sea causes Ekman-transport,leads to decrease of sea surface height in the Barents Sea, due to geostrophic adjustment, further induces a cyclonic circulation anomaly around the Barents Sea, and causes the weakening of the Atlantic inflow in the Fram Strait. Our results highlight the importance of polar lows in forcing the Atlantic inflow in the Fram Strait and can help us to further understand the effect of Atlantic warm water on the change of the Arctic Ocean.  相似文献   
9.
基于1980年、2005年和2015年3期区域精密水准网观测资料,利用线性动态平差模型计算获取大别山地区水准网长期垂直运动速度场图像。研究发现,淮河平原地表下沉较为严重,大别山呈现弱隆升趋势运动,长江谷地边缘地区较大别山区呈现明显的隆升运动。跨郯庐断裂带水准剖面结果显示,垂直运动与地形呈负相关和弱相关。  相似文献   
10.
In this paper, a comprehensive study on simulating the shearing behavior of frictional materials is performed. A set of two explicit equations, describing the relationship among the shear stress ratio and the distortional strain and the volumetric strain, are formulated independently. The equations contain three stress parameters and three strain parameters and another parameter representing the nonuniformity of stress and strain during softening. All the parameters have clear physical significance and can be determined experimentally. It is demonstrated that the proposed equations have the capacity of simulating the complicated shearing behavior of many types of frictional materials including geomaterials. The proposed equations are used to simulate the stress–strain behavior for 27 frictional materials with 98 tests. These materials include soft and stiff clays in both reconstituted and structured states, silicon sands and calcareous sands, silts, compacted fill materials, volcanic soils, decomposed granite soils, cemented soils (both artificially and naturally cemented), partially saturated soils, ballast, rocks, reinforced soils, tire chips, sugar, wheat, and rapeseed. It has been demonstrated that the proposed explicit constitutive equations have the capacity to capture accurately the shearing behavior of frictional materials both qualitatively and quantitatively. A study on model parameters has been performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号