首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
北极各海域海冰覆盖范围的变化特征   总被引:2,自引:1,他引:1  
Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming.This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions.The results indicate that sea ice extent reduction during 1979–2013 is most significant in summer,following by that in autumn,winter and spring.In years with rich sea ice,sea ice extent anomaly with seasonal cycle removed changes with a period of 4–6 years.The year of 2003–2006 is the ice-rich period with diverse regional difference in this century.In years with poor sea ice,sea ice margin retreats further north in the Arctic.Sea ice in the Fram Strait changes in an opposite way to that in the entire Arctic.Sea ice coverage index in melting-freezing period is an critical indicator for sea ice changes,which shows an coincident change in the Arctic and sub regions.Since 2002,Region C2 in north of the Pacific sector contributes most to sea ice changes in the central Aarctic,followed by C1 and C3.Sea ice changes in different regions show three relationships.The correlation coefficient between sea ice coverage index of the Chukchi Sea and that of the East Siberian Sea is high,suggesting good consistency of ice variation.In the Atlantic sector,sea ice changes are coincided with each other between the Kara Sea and the Barents Sea as a result of warm inflow into the Kara Sea from the Barents Sea.Sea ice changes in the central Arctic are affected by surrounding seas.  相似文献   

2.
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.  相似文献   

3.
Nonlinear internal waves(NIWs) are ubiquitous around the Kara Sea, a part of the Arctic Ocean that is north of Siberia. Three hot spot sources for internal waves, one of which is the Kara Strait, have been identified based on Envisat ASAR. The generation and evolution of the NIWs through the interactions of the tide and topography across the strait is studied based on a nonhydrostatic numerical model. The model captures most wave characteristics shown by satellite data. A typical inter-packets distance on the Barents Sea side is about 25 km in summer, with a phase speed about 0.65 m/s. A northward background current may intensify the accumulation of energy during generation, but it has little influence on the other properties of the generated waves. The single internal solitary wave(ISW) structure is a special phenomenon that follows major wave trains, with a distance about 5–8 km. This wave is generated with the leading wave packets during the same tidal period. When a steady current toward the Kara Sea is included, the basic generation process is similar, but the waves toward the Kara Sea weaken and display an internal bore-like structure with smaller amplitude than in the control experiment. In winter, due to the growth of sea ice, stratification across the Kara Strait is mainly determined by the salinity, with an almost uniform temperature close to freezing. A pycnocline deepens near the middle of the water depth(Barents Sea side), and the NIWs process is not as important as the NIWs process in summer. There is no fission process during the simulation.  相似文献   

4.
On the basis of the latest version of a U.S. Navy generalized digital environment model(GDEM-V3.0) and World Ocean Atlas(WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that:(1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea(SCS);(2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness;(3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability;(4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait.Moreover, the deepwater overflow reaches its seasonal maximum in December(based on GDEM-V3.0) or in fall(October–December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest(3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.  相似文献   

5.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

6.
The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900–2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.  相似文献   

7.
The ear-shaped thermal front(ESTF), formed by the convergence of the Yellow Sea Warm Current(YSWC) and the Shandong Coastal Current(SCC), is a very important oceanic phenomenon in the Yellow Sea(YS) in winter. In situ measurements and reanalysis datasets all demonstrate that the ESTF has been weakening during1950s–1990s, and a similar weakening trend is also found in winter monsoon over the YS. Numerical experiments show that the weakening of winter monsoon can induce an anomalous circulation in the YS on multi-decadal timescale with northward anomalous currents along China's coast and southward anomalous currents in the central YS—generally opposite to seasonal mean circulation. The anomalous circulation causes slowdown of the YSWC and the SCC, and thus weakens the ESTF. Since the ESTF plays important roles in regional ocean dynamics and air-sea interactions, its weakening has important implications for regional climate in the YS in winter.  相似文献   

8.
Sea ice export through the Baffin Bay plays a vital role in modulating the sea ice cover variability in the Labrador Sea.In this study,satellite-derived sea ice products are used to obtain the sea ice area flux (SIAF) through the three passages in the Baffin Bay (referred to as A,B,and C for the north,middle,and south passages,respectively).The spatial variability of the monthly sea ice drift in the Baffin Bay is presented.The interannual variability and trends in SIAF via the three passages are outlined.The connection to several large-scale atmospheric circulation modes is assessed.Over the period of 1988–2015,the average annual (October to the following September) SIAF amounts to 555×10~3 km~2,642×10~3 km~2,and 551×10~3 km~2 through Passages A,B,and C,respectively.These quantities are less than that observed through the Fram Strait (FS,707×10~3 km~2) of the corresponding period.The positive trends in annual SIAF,on the order of 53.1×10~3 km~2/(10 a) and 43.2×10~3 km~2/(10 a)(significant at the 95%confidence level),are identified at Passages A and B,respectively.The trend of the south passage (C),however,is slightly negative (–13.3×10~3 km~2/(10 a),not statistically significant).The positive trends in annual SIAF through the Passages A and B are primarily attributable to the significant increases after 2000.The connection between the Baffin Bay sea ice export and the North Atlantic Oscillation is not significant over the studied period.By contrast,the association with the cross-gate sea level pressure difference is robust in the Baffin Bay (R equals 0.69 to 0.71,depending on the passages considered),but relatively weaker than that over FS (R=0.74).  相似文献   

9.
Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. In order to understand the causes of variability in fish stocks (natural and/or anthropogenic) and calibrate the error between catches and standing stocks, it is essential to develop long-term time series of fish stocks from the time when human impacts are minimal or negligible. Well preserved fish scales from sediment record are regarded as useful indicators revealing the history of fish population dynamics over the last centuries. Anchovy scales was first analyzed over the Yellow Sea and East China Sea and the largest abundance was found in the central South Yellow Sea where is regarded as the largest overwintering ground for Japanese anchovy (Engraulis japonicas). Thus in the central South Yellow Sea, two cores covering the last 150 years were collected for estimating fish scale flux. The scale deposition rate (SDR) records show that the decadal scale SDRs were obviously coherent between cores with independent chronologies. Thecalibration of downcore SDRs to the standing stocks of anchovy further validated that SDR is a reliable proxy to recon-struct the long-term anchovy population dynamic in the central South Yellow Sea where anoxic conditions prevail in the sediment. When assembled with other productivity proxies, it would be expected that SDR could be associated with changes in oceanic productivity and may make a contribution to determine the forcing factors and elucidate the mechanism of the process in future.  相似文献   

10.
The recent decline in the Arctic sea ice has coincided with more cold winters in Eurasia.It has been hypothesized that the Arctic sea ice loss is causing more mid-latitude cold extremes and cold winters,yet there is lack of consensus in modeling studies on the impact of Arctic sea ice loss.Here we conducted modeling experiments with Community Atmosphere Model Version 5(CAM5) to investigate the sensitivity and linearity of Eurasian winter temperature response to the Atlantic sector and Pacific sector of the Arctic sea ice loss.Our experiments indicate that the Arctic sea ice reduction can significantly affect the atmospheric circulation by strengthening the Siberian High,exciting the stationary Rossby wave train,and weakening the polar jet stream,which in turn induce the cooling in Eurasia.The temperature decreases by more than 1°C in response to the ice loss in the Atlantic sector and the cooling is less and more shifts southward in response to the ice loss in the Pacific sector.More interestingly,sea ice loss in the Atlantic and Pacific sectors together barely induces cold temperatures in Eurasia,suggesting the nonlinearity of the atmospheric response to the Arctic sea ice loss.  相似文献   

11.
Calculations were performed using a model of the combined circulation of the Atlantic Ocean (from 20° S), the Arctic Ocean, and the Bering Sea with a resolution of 0.25° by latitude and longitude for 1958–2006. The results are compared with observational data and results obtained by other models. Model estimates were obtained for the evolution of the Atlantic water inflow into the Arctic basin through the Fram Strait and the Barents Sea. Increased transports of Atlantic water inflow into the Arctic basin were found for the first half of the 1990s and 2004–2006. The relation between Atlantic water transports into the Arctic basin and variations in the North Atlantic oscillation is shown. A positive trend of Atlantic water inflow into the Arctic basin through the Fram Strait (0.061 Sv per year) was revealed. The evolution of the freshwater-layer thickness in the Beaufort Circulation (BC) is considered. There are three periods of its increased values combined with the increased anticyclonic vorticity of BC currents: the 1960s, the 1980s, and from 1999 until now. The model estimate for a statistical mean timescale of the cycle of freshwater concentration and sink from the BC is 16 years, which is close to currently existing estimates. The evolution of anticyclonic vorticity of currents leads the variations in the freshwater-layer thickness of the BC by 1.75 years. Since the mid-1970s, there have been long positive trends of both the freshwater-layer thickness and anticyclonic vorticity of currents in the BC. In the same time period, there has been a satellite-registered negative trend in the ice area in the Arctic, which was reproduced by the model.  相似文献   

12.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   

13.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability.  相似文献   

14.
The Arctic Mediterranean is important for climate studies because of its unique thermodynamic characteristics and its potential role in freshwater export, which would influences air-sea and ice-sea interactions and may change the North Atlantic thermohaline circulation. It is difficult to obtain consistent and complete estimates of heat and freshwater budgets due to sparse observation. In this paper, we use a coupled Arctic ocean/sea-ice model with NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data, long-term gauged river runoff data, precipitation data and estimates of volume transports to examine heat and freshwater budgets and pathways in dynamically and thermodynamically consistence. The model implements Neptune effect, flux-corrected-transport algorithm and more sophisticated treatments of heat and freshwater fluxes. Uncertainties and deficiencies in the modeling were also evaluated. Results indicate that the Arctic Ocean is provided heat mainly from the Fram Strait branch of Atlantic water at about 46 TW, which is within the range in literature. The Barents Sea branch carries about 43 TW of net heat entering the Barents Sea, but only 2 TW of net heat enters the Arctic Ocean. The Atlantic water is significantly modified in the Barents Sea. About 39 TW of heat is lost, which is consistent with the range of estimates by Simonsen and Haugan (1996). The model suggests 79,422 km3 of freshwater storage mainly distributing the Canada Basin, the Beaufort Sea and the Eurasian coast, which is in a good agreement with estimate by Aagaard and Carmack (1989). Freshwater origins from river runoff, precipitation and the Bering Strait throughflow. Liquid freshwater mainly exports via the Canadian Archipelago and Fram Strait at the rates of 3100 km3/yr and 1400 km3/yr. Sea-ice is dominantly transported through Fram Strait with 1923 km3/yr. Model discrepancies exist and climate drift is clear, which require comprehensive physical treatments of mixing processes and dense water processes in the model.  相似文献   

15.
The discharge of radioactive waste, from nuclear fuel reprocessing facilities, into the coastal waters of north-west Europe has resulted in a significant increase in the inventories of a number of artificial radionuclides in the North Atlantic. Radiocaesium, 90Sr and 99Tc, which behave conservatively in seawater, have been used widely as tracers of water movement through the North Sea, Norwegian Coastal Current, Barents Sea, Greenland Sea, Fram Strait, Eurasian Basin, East Greenland Current and Denmark Strait overflow. These studies are summarised in the present paper. It has been estimated that 22% of the 137Cs Sellafield discharge has passed into the Barents Sea, en route to the Nansen Basin, via the Bjomoya-Fugloya Section, with another 13% passing through the Fram Strait. This amounts to 14 PBq 137Cs. Quantifying the influx of other radionuclides has been more problematic. The inflowing Atlantic water now appears to be diluting waters in the Arctic Basin, which were contaminated in the late 1970s and early 1980s as a result of the substantial decrease in the discharge of reprocessing wastes. Sellafield (U.K.) has dominated the supply of 134Cs, 137Cs, 90Sr, 99Tc and Pu, whereas La Hague (France) has contributed a larger proportion of 129I and 125Sb.  相似文献   

16.
This paper presents reconstructions of ice sheet boundaries, lacustrine and marine paleobasins, as well as the connections of the Barents and Baltic seas with the North Atlantic from the Last Glacial Maximum to the Holocene. The reconstructions are based on original and published data obtained from the northern and western parts of the Barents Sea and Baltic depressions with account for the available regional schematic maps of deglaciation. The early deglaciation of the Scandinavian–Barents ice sheet culminated with the Bølling-Allerød interstadial (14.5–12.9 cal ka BP), which was characterized by a more vigorous Atlantic meridional overturning circulation (AMOC) and a corresponding increase in surface Atlantic water inflow into the Barents Sea through deep troughs. The Baltic Ice Lake (BIL) remained a dammed-up isolated basin during deglaciation from 16.0 to 11.7 cal ka BP. In the Younger Dryas (YD), the lake drained into the North Sea and was replaced by a brackish Yoldia Sea (YS) at the beginning of the Holocene (Preboreal, 11.7–10.7 cal ka BP), due to a limited connection between two basins through the Närke Strait. In the Barents Sea, the next increase in the Atlantic water influx into the deep basins corresponded to terminal YD and Preboreal events with a culmination in the Early Holocene. The Yoldia Sea became a lake again during the next stage, the Ancylus (~10.7–8.8 cal ka BP). Atlantic water inflow both into the Barents and Baltic seas varied during the Holocene, with a maximum contribution in the Early Holocene, when the Littorina Sea (LS, 8–4 cal ka BP) connection with the North Sea via the Danish Straits was formed to replace the Ancylus Lake. The recent, post-Littorina stage (PS, the last 4 cal ka) of the Baltic Sea evolution began in the Late Holocene.  相似文献   

17.
Inflow of Atlantic water (AW) from Fram Strait and the Barents Sea into the Arctic Ocean conditions the intermediate (100–1000 m) waters of the Arctic Ocean Eurasian margins. While over the Siberian margin the Fram Strait AW branch (FSBW) has exhibited continuous dramatic warming beginning in 2004, the tendency of the Barents Sea AW branch (BSBW) has remained poorly known. Here we document the contrary cooling tendency of the BSBW through the analysis of observational data collected from the icebreaker Kapitan Dranitsyn over the continental slope of the Eurasian Basin in 2005 and 2006. The CTD data from the R.V. Polarstern cruise in 1995 were used as a reference point for evaluating external atmospheric and sea-ice forcing and oxygen isotope analysis. Our data show that in 2006 the BSBW core was saltier (by ~0.037), cooler (by ~0.41 °C), denser (by ~0.04 kg/m3), deeper (by 150–200 m), and relatively better ventilated (by 7–8 μmol/kg of dissolved oxygen, or by 1.1–1.7% of saturation) compared with 2005. We hypothesize that the shift of the meridional wind from off-shore to on-shore direction during the BSBW translation through the Barents and northern Kara seas results in longer surface residence time for the BSBW sampled in 2006 compared with samples from 2005. The cooler, more saline, and better-ventilated BSBW sampled in 2006 may result from longer upstream translation through the Barents and northern Kara seas where the BSBW was modified by sea-ice formation and interaction with atmosphere. The data for stable oxygen isotopes from 1995 and 2006 reveals amplified brine modification of the BSBW core sampled downstream in 2006, which supports the assumption of an increased upstream residence time as indicated by wind patterns and dissolved oxygen values.  相似文献   

18.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

19.
Standard hydrological section data, collected in the eastern Barents Sea in September 1997, have been analyzed using a variational data assimilation technique. This method allows us to obtain temperature, salinity and velocity fields that are consistent with observations and dynamically balanced within the framework of a steady-state model describing large-scale nearly geostrophic circulation. Error bars of the optimized fields are computed by explicit inversion of the Hessian matrix. The optimized velocity field is in agreement with independent velocity observations derived from surface drifter trajectories in the southwestern part of the Barents Sea. Optimized fields provide the following estimates of integral characteristics of the circulation in the region: i) the North Cape current transport is 2.12 ± 0.25 Sv; ii) the Karskie Vorota Strait throughflow is 0.7 ± 0.06 Sv; iii) heat flux with Atlantic water is 4.7 ± 0.16⋅1011 W; iv) salt import from the Atlantic Ocean is 7.41 ± 0.46⋅103 kg/s. The imbalance of the heat budget in the eastern part of the Barents Sea indicates the presence of statistically insignificant surface heat fluxes which are less than 1 W/m2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号