首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10875篇
  免费   914篇
  国内免费   737篇
测绘学   4894篇
大气科学   418篇
地球物理   748篇
地质学   2925篇
海洋学   562篇
天文学   19篇
综合类   1037篇
自然地理   1923篇
  2024年   14篇
  2023年   53篇
  2022年   158篇
  2021年   224篇
  2020年   217篇
  2019年   283篇
  2018年   170篇
  2017年   406篇
  2016年   353篇
  2015年   431篇
  2014年   520篇
  2013年   846篇
  2012年   692篇
  2011年   717篇
  2010年   580篇
  2009年   769篇
  2008年   845篇
  2007年   824篇
  2006年   775篇
  2005年   677篇
  2004年   602篇
  2003年   568篇
  2002年   487篇
  2001年   337篇
  2000年   304篇
  1999年   213篇
  1998年   131篇
  1997年   101篇
  1996年   75篇
  1995年   42篇
  1994年   29篇
  1993年   19篇
  1992年   16篇
  1991年   13篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Urban development significantly alters the landscape by introducing widespread impervious surfaces, which quickly convey surface run‐off to streams via stormwater sewer networks, resulting in “flashy” hydrological responses. Here, we present the inadequacies of using raster‐based digital elevation models and flow‐direction algorithms to delineate large and highly urbanized watersheds and propose an alternative approach that accounts for the influence of anthropogenically modified land cover. We use a semi‐automated approach that incorporates conventional drainage networks into overland flow paths and define the maximal run‐off contributing area. In this approach, stormwater pipes are clustered according to their slope attributes, which define flow direction. Land areas drained by each cluster and contributing (or exporting) flow to a topographically delineated catchment were determined. These land masses were subsequently added or removed from the catchment, modifying both the shape and the size. Our results in a highly urbanized Toronto, Canada, area watershed indicate a moderate net increase in the directly connected watershed area by 3% relative to a topographically forced method; however, differences across three smaller scale subcatchments are greater. Compared to topographic delineation, the directly connected watershed areas of both the upper and middle subcatchments decrease by 5% and 8%, respectively, whereas the lower subcatchment area increases by 15%. This is directly related to subsurface storm sewer pipes that cross topographic boundaries. When directly connected subcatchment area is plotted against total streamflow and flashiness indices using this method, the coefficients of variation are greater (0.93 to 0.97) compared to the use of digital elevation model‐derived subcatchment areas (0.78 to 0.85). The accurate identification of watershed and subcatchment boundaries should incorporate ancillary data such as stormwater sewer networks and retention basin drainage areas to reduce water budget errors in urban systems.  相似文献   
2.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
3.
With the rapid development of space technology, earth observation technology and sky observatory technolo-gy, they have played a more and more important part in monitoring and predicting of earthquakes and volcanoes in the terres-trial land. In recent years, the related agencies have done the experiments and researches on monitoring and predicting ofearthquakes and volcanoes in the forewarning period by means of many approaches, such as satellite thermal infrared re-mote sensing (TIRS), Global Positioning System (GPS), differential interferometric synthesis aperture radar (D-INSAR),astronomical time-latitude residual anomaly, and Geographic Information Systems (GIS), etc. A quite large number of re-search foundation has been built in the fundamental theories and application methods. The experiments and researcheshave shown that these technology is efficient methods for high frequency crust movement. If the existed separate scientificforces and results are possibly assembled together to form a more complete integration monitoring system with the combina-tion of space, sky observation, ground, deep geology and macro anomaly, it will come into a new stage of monitoring andpredicting of earthquakes and volcanic eruptions.  相似文献   
4.
对"数字地球"的几点认识   总被引:7,自引:0,他引:7  
自“数字地球”的概念被提出以来,已引起全球的广泛关注和积极响应。然而,数字地球在目前还仅仅是一个概念。为了逐步建立“数字地球”,需要就“数字地球”的理论、技术以及实现进行深入地探讨。从“数字地球”的产生背景、基本概念、研究内容、构成框架、关键技术、实施难点和发展战略等方面谈了对“数字地球”的一些认识。  相似文献   
5.
形变大地测量学的进展、问题与地震预报   总被引:12,自引:7,他引:5  
简要概括了形变大地测量学的革命性进展,研讨了它的科学特色、功能和定义以及对地球科学和防灾减灾的推动。形变大地测量学有助于从根本上击破多年来制约地震预报的“瓶颈”,但也存在不少急待解决的问题。着重研讨了在21世纪前10年,形变大地测量学如何依托多年的学科积累并充分受益于人造卫星和数字化等新技术,开展创新性研究和试验以推进地震预报。为此,对当前的研究工作提出了12条科学技术途径。最后对学科名称提出了建议。  相似文献   
6.
青岛市黄岛区拟建设海底地下油气储藏库,前期地质勘察工作要求施工倾角45°、深220m的取心钻孔4个,并在孔内分段进行压水试验.本文介绍了如何利用XY-4型金刚石小口径钻机施工基岩深斜孔及压水试验技术.  相似文献   
7.
计算机制图(CAC)和电子出版系统的普及和推广,从根本上改变了传统的地图生产工艺。本文结合制图实践,讨论了应用Coreldraw图形软件编辑出版专题地图的适应性、系统条件和工艺流程,并总结了一些制图经验和应该注意的若干问题。  相似文献   
8.
Desertification is an environmental issue in the world. The salt-alkalization desertification land area formed by both primary and secondary salt-alkalization has extended in a large scale, which has become a significant eco-environmental problem. Based on the characteristics of eco-environment and the situation of desertification in western Songnen plain, this paper reports the analyzes of its formation in background and cause. An early warning system on the salt-alkalization desertification is established and the GIS technology is used to abstract the information of desertification evaluation index. Supported by the integrated technology of the GIS and ANN, the orientation and quantitative result of desertification are gained, which is helpful to the eco-environment protection and resource development in western Songnen Plain.  相似文献   
9.
采用GIS定性分析和数值分析的方法,研究了印度洋大眼金枪鱼延绳钓钓获率与水温的 关系。结果表明,大眼金枪鱼延绳钓高钓获率的出现与印度洋加权水温大面分布存在明显的相互 关系,大眼金枪鱼的渔获适温在14~17℃间。建议测量200m水深处的水温作为海上生产时的参 考。  相似文献   
10.
In the article the author looks back the hard development course and great progress in earth quake science and technology in China during the last near a half of century and expounds the following 3 aspects: (1) The strong desire of the whole society to mitigate seismic disasters and reduce the effect of earthquakes on social-economic live is a great driving force to push forward the development of earthquake science and technology in China; (2) To better ensure people‘ s life and property, sustainable economic development, and social stability is an essential purpose to drive the development of earthquake science and technology in China; and (3) To insist on the dialectical connection of setup of technical system for seismic monitoring with the scientific research of earthquakes and to better handle the relation between crucial task, current scientif ic level, and the feasibility are the important principles to advance the earthquake science and technology in China. Some success and many setbacks in earthquake disaster mitigation consistently enrich our knowledge regarding the complexity of the conditions for earthquake occurrence and the process of earthquake preparation, promote the reconstruction and modernization of technical system for earthquake monitoring, and deepen the scientific research of earthquakes. During the last 5 years, the improvement and modernization of technical system for earthquake monitoring have clearly provided the technical support to study and practice of earthquake prediction and pre caution, give prominence to key problems and broaden the field of scientific research of earth quakes. These have enabled us to get some new recognition of the conditions for earthquake oc currence and process of earthquake preparation, characteristics of seismic disaster, and mecha nism for earthquake generation in China‘s continent. The progress we have made not only en courages us to enhance the effectiveness of earthquake disaster mitigation, but also provides a basis for accelerating further development of earthquake science and technology in China in the new century, especially in the 10th five-year plan. Based on the history reviewed, the author sets forth a general requirement for develop ment of earthquake science and technology in China and brings out 10 aspects to be stressed and strengthened at present and in the future. These are: upgrade and setup of the network of digitized seismic observation; upgrade and setup of the network for observation of seismic pre cursors; setup of the network for observation of strong motion; setup of the laboratories for ex periment on seismic regime; establishment of technical system for seismic information, emer gency command and urgent rescue; research on short-term and imminent earthquake predic tion; research on intermediate- and long-term earthquake prediction; research on attenuation of seismic ground motion, mechanism for seismic disaster, and control on seismic disaster; ba sic research fields related to seismology and geoscience. We expect that these efforts will signifi cantly elevate the level of earthquake science and technology in China to the advanced interna tional level, improve theories, techniques, and methods for earthquake precaution and predic tion, and enhance the effectiveness of earthquake disaster mitigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号