首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3506篇
  免费   717篇
  国内免费   430篇
测绘学   659篇
大气科学   451篇
地球物理   1380篇
地质学   1165篇
海洋学   297篇
天文学   23篇
综合类   212篇
自然地理   466篇
  2024年   10篇
  2023年   35篇
  2022年   95篇
  2021年   146篇
  2020年   171篇
  2019年   153篇
  2018年   132篇
  2017年   215篇
  2016年   180篇
  2015年   202篇
  2014年   233篇
  2013年   333篇
  2012年   231篇
  2011年   238篇
  2010年   175篇
  2009年   197篇
  2008年   205篇
  2007年   266篇
  2006年   203篇
  2005年   169篇
  2004年   146篇
  2003年   128篇
  2002年   118篇
  2001年   103篇
  2000年   77篇
  1999年   65篇
  1998年   73篇
  1997年   69篇
  1996年   53篇
  1995年   37篇
  1994年   42篇
  1993年   42篇
  1992年   20篇
  1991年   18篇
  1990年   23篇
  1989年   12篇
  1988年   17篇
  1987年   8篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1972年   1篇
  1954年   1篇
排序方式: 共有4653条查询结果,搜索用时 515 毫秒
101.
黄土区人类活动影响下的 产汇流模拟研究   总被引:4,自引:0,他引:4  
日益频繁的人类活动改变了流域下垫面条件,对流域产汇流产生很大的影响。本文以黄河中游典型支流岔巴沟为研究区域,提出利用基于DEM的分布式水文模拟技术,探讨流域人类活动过程中的产汇流模拟,避免了经验公式的概化和由此引起的局限。模拟的结果证实了该方法的可行性。采用网格滞蓄的方法可以在子网格上体现人类活动引起的下垫面的变化及其对产汇流的影响,反映各个时期的产汇流条件,对降雨做出合理响应。  相似文献   
102.
Adequate irrigation inputs are essential for the application of hydrological models in irrigated catchments, but reliable data on both the amount and the frequency of irrigation applications are often missing at an appropriate spatial scale. In this paper, we demonstrate and test approaches to estimate irrigation inputs for distributed hydrological modelling. In this context, the Soil and Water Assessment Tool was applied to simulate water balances for an irrigated catchment in southeast Australia during the period 2008–2010. Two methods for estimating irrigation inputs were tested. One method was based on a fixed irrigation application rate, whereas the other one had variable irrigation rates depending on season and the irrigated crop. These two approaches were also compared with the ‘auto‐irrigation’ method within the Soil and Water Assessment Tool model. The method with variable irrigation rates resulted in the most reasonable interpretation of the readily available irrigation data, consistent estimates of irrigation runoff coefficients throughout the year and the best fit to observed data on both drain flows at the catchment outlet and spatial evapotranspiration patterns. We also found that the different irrigation inputs significantly affected simulated water balances, in particular deep percolation under relatively dry climatic conditions. All these results suggest that it is possible to infer irrigation inputs from readily available data and local knowledge, adequate for hydrological modelling in irrigated catchments. Our study also demonstrates that, in order to predict reliable water balances in irrigated catchments, an accurate knowledge of irrigation scheduling and irrigation runoff is required. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
103.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
104.
Biocrusts abound in southern Israel, covering the Hallamish dune field near Nizzana (NIZ) in the Negev (mean annual precipitation of 95 mm) and the coast of Nizzanim (NIM) near Ashdod (mean annual precipitation of 500 mm). While the hydrological response of the NIZ crust to natural rain events was thoroughly investigated, no data is available on the hydrological response of the NIM crust. Runoff was monitored in runoff plots during the years 2005–2008, and in addition, sprinkling experiments were carried out on NIM and NIZ crusts. For the evaluation of the possible factors that may control runoff initiation, fine content of the parent material, crust thickness, compressional strength, hydrophobicity, surface microrelief, organic matter, biomass (chlorophyll a and total carbohydrates) and the crust's species composition of NIM were studied and compared to that of NIZ. The data showed that in comparison to the NIZ crust that readily generated runoff, no runoff was produced by the NIM crust. This was so despite the fact that (1) Microculeus vaginatus predominated in both crusts, (2) the substantially higher rain intensities in NIM, (3) the greater thickness and higher chlorophyll content and (4) the lower microrelief at NIM in comparison to NIZ. The lack of runoff in NIM was explained by its low amounts of exopolysaccharides that did not suffice to affectively clog the surface and in turn to facilitate runoff initiation. The absence of runoff and its consequences on the NIM ecosystem are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
105.
Identifying the role of the two main driving factors—climate change and human interventions—in influencing runoff processes is essential for sustainable water resources management. For this purpose, runoff regime change detection methods were used to divide the available hydroclimatic variables into a baseline and a disturbed period. We applied hydrological modelling and the climate elasticity of runoff method to determine the contribution of climate change and human interventions to changes in runoff. The hydrological model, SWAT, was calibrated during the baseline period and used to simulate the naturalized runoff pattern for the disturbed period. Significant changes in runoff in the study watershed were detected from 1982, suggesting that human interventions play a dominant role in influencing runoff. The combined effects of climate change and human interventions resulted in a 41.3 mm (23.9%) decrease in runoff during the disturbed period, contributing about 40% and 60% to the total runoff change, respectively. Furthermore, analysis of changes in land cover dynamics in the watershed over the past four decades supported these changes in runoff. Contrary to other decades, the discrepancy between naturalized and observed runoff was small in the 2010s, likely due to increased baseflow as a result of storage and/or release of excess water during the dry season. This study contributes to our understanding of how climate change and human interventions affect hydrological responses of watersheds, which is important for future sustainable water management and drought adaptation.  相似文献   
106.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
107.
Hou  Wenjuan  Gao  Jiangbo 《地理学报(英文版)》2019,29(3):432-448
Journal of Geographical Sciences - Runoff generation is an important part of water retention service, and also plays an important role on soil and water retention. Under the background of the...  相似文献   
108.
浮动车轨迹数据具有覆盖范围广、更新周期短、获取成本低等特点,对于地图的生产和更新具有重要意义,但是由于受到卫星信号被遮挡及多路径效应的影响,其精度普遍较低。本文采用一种基于OSM作为参考数据的方式对浮动车轨迹数据进行校正。首先通过一种分层时空地图匹配的方式将轨迹数据与OSM进行匹配;然后采用引力模型对数据进行校正;最后在武汉市出租车轨迹数据上进行了试验。结果表明,本文提出的数据校正方法可以有效地提高浮动车轨迹数据的精度。  相似文献   
109.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
110.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号