首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9556篇
  免费   2445篇
  国内免费   2979篇
测绘学   87篇
大气科学   1425篇
地球物理   4370篇
地质学   4640篇
海洋学   3085篇
天文学   105篇
综合类   443篇
自然地理   825篇
  2024年   36篇
  2023年   141篇
  2022年   247篇
  2021年   331篇
  2020年   407篇
  2019年   559篇
  2018年   446篇
  2017年   360篇
  2016年   449篇
  2015年   501篇
  2014年   556篇
  2013年   641篇
  2012年   618篇
  2011年   628篇
  2010年   529篇
  2009年   638篇
  2008年   619篇
  2007年   808篇
  2006年   719篇
  2005年   603篇
  2004年   603篇
  2003年   516篇
  2002年   462篇
  2001年   386篇
  2000年   401篇
  1999年   368篇
  1998年   357篇
  1997年   312篇
  1996年   328篇
  1995年   286篇
  1994年   262篇
  1993年   205篇
  1992年   163篇
  1991年   144篇
  1990年   92篇
  1989年   73篇
  1988年   59篇
  1987年   38篇
  1986年   24篇
  1985年   13篇
  1984年   14篇
  1983年   6篇
  1982年   2篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1974年   1篇
  1973年   1篇
  1954年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
主要介绍了新型波浪采集系统的设计思想与主要参数,采集、存储、运算和电源控制部分的结构与组成,以及各部分的特点和关键技术。  相似文献   
52.
In most design applications such as alignment of the berthing structure and breakwater alignment, it becomes necessary to determine the direction of design wave. There are two different approaches to determine wave direction. One involves the use of first order Fourier coefficients (mean wave direction) while the other uses second order Fourier coefficients (principal wave direction). Both the average wave direction over the entire frequency range (0.03–0.58 Hz) and the direction corresponding to the peak frequency are used in practice. In the present study, comparison is made on wave directions estimated based on first and second order Fourier coefficients using data collected at four locations in the west and east coasts of India. Study shows that at all locations, the mean and principal wave directions for frequencies ranging from 0.07 to 0.25 Hz (±0.5 times peak frequency) co-vary with a correlation coefficient of 0.99 but at lower and higher frequencies, difference between the parameters is large. Average difference between the mean wave direction at peak frequency and the average over the frequency related to spectral energy more than 20% of maximum value is less, around 13°. Study shows that average difference in the sea and swell directions is around 39°.  相似文献   
53.
From the experimental studies in recent years, it has become known that when a wave breaks directly on a vertical faced coastal structure, high magnitude impact pressures are produced. The theoretical and experimental studies show that the dynamic response of such structures under wave impact loading is closely dependent on the magnitude and duration of the load history. The dynamic analysis and design of a coastal structure can be succeeded provided the design load history for the wave impact is available. Since these types of data are very scarce, it is much more convenient to follow a method which is based on static analysis for the dynamic design procedure. Therefore, to facilitate the dynamic design of a vertical plate that is exposed to breaking wave impact, a multiplication factor called “dynamic magnification factor” is herein presented which is defined as the ratio of the maximum value of the dynamic response to that found by static analysis. The computational results of the present study show that the dynamic magnification factor is a useful ratio to transfer the results of static analysis to the dynamic design of a coastal plate for the maximum impact pressure conditions of pmaxH0≤18.  相似文献   
54.
Nonlinear interactions between large waves and freely floating bodies are investigated by a 2D fully nonlinear numerical wave tank (NWT). The fully nonlinear 2D NWT is developed based on the potential theory, MEL/material-node time-marching approach, and boundary element method (BEM). A robust and stable 4th-order Runge–Kutta fully updated time-integration scheme is used with regriding (every time step) and smoothing (every five steps). A special φn-η type numerical beach on the free surface is developed to minimize wave reflection from end-wall and wave maker. The acceleration-potential formulation and direct mode-decomposition method are used for calculating the time derivative of velocity potential. The indirect mode-decomposition method is also independently developed for cross-checking. The present fully nonlinear simulations for a 2D freely floating barge are compared with the corresponding linear results, Nojiri and Murayama’s (Trans. West-Jpn. Soc. Nav. Archit. 51 (1975)) experimental results, and Tanizawa and Minami’s (Abstract for the 6th Symposium on Nonlinear and Free-surface Flow, 1998) fully nonlinear simulation results. It is shown that the fully nonlinear results converge to the corresponding linear results as incident wave heights decrease. A noticeable discrepancy between linear and fully nonlinear simulations is observed near the resonance area, where the second and third harmonic sway forces are even bigger than the first harmonic component causing highly nonlinear features in sway time series. The surprisingly large second harmonic heave forces in short waves are also successfully reproduced. The fully updated time-marching scheme is found to be much more robust than the frozen-coefficient method in fully nonlinear simulations with floating bodies. To compare the role of free-surface and body-surface nonlinearities, the body-nonlinear-only case with linearized free-surface condition was separately developed and simulated.  相似文献   
55.
Internal soliton is the large amplitude wave existing in the pycnocline, induced by internal tide in the condition of special bottom topography. During its propagation process, the induced disturbance can bring about strong convergence of sea water and sudden strong current (wave-induced-current), which can cause severe threat to the ocean engineering structures, such as oil drilling platform and pipeline. In this paper, Morison’s empirical method, modal separation and regression analyses are introduced to estimate the forces and torques exerted by internal soliton on cylindrical piles. As an example, a limited set of observational data recording a passage of the internal soliton near Dongsha Islands is used to estimate the horizontal velocity and its acceleration in a vertical section for computing the force and torque on a supposed pile, and the estimation results are reasonable. It is shown that, the higher number of the modes retained in the calculation, the better the estimation of velocity profile fits the observational one. A better overall approximation to the real solution can be reached if there are more observational current data acquired in a whole vertical profile.  相似文献   
56.
Y. -S. Cho   《Ocean Engineering》2003,30(15):1915-1922
A new and simple calculating technique for the Jacobian elliptic parameter is presented in this study. The technique is very useful in generating a train of cnoidal waves in both laboratory and numerical wave tanks. Upon specification of water depth, the wave height and either the wave period or the wavelength, the proposed technique uses the Newton–Raphson method to estimate the Jacobian elliptic parameter directly, without trial and error procedures or look-up in tables. It is shown that the technique provides equally accurate results as the ad hoc methods previously used.  相似文献   
57.
A statistical model is developed to predict wave overtopping volume and rate of extreme waves on a fixed deck. The probability density function for the volume and rate of overtopping water are formulated based on the truncated Weibull distribution with the assumption of local sinusoidal profile for small amplitude waves. Sensitivity to the wave nonlinearity parameter and deck clearance is discussed. The statistical model is compared to laboratory data of the instantaneous free surface elevation measured in front of a fixed deck, and overtopping volume and overtopping rate measured at the leading edge of the deck. The statistical theory compared well with the measured exceedance probability seaward of the deck. The model prediction of the exceedance probability of deck overtopping gave qualitatively good agreement for large overtopping values.  相似文献   
58.
针对远区台风对河口波浪动力场的影响问题,利用第三代波浪模式SWAN计算了远区台风"三巴"期间长江口波浪动力场分布,分析了陆架至河口区的波浪能量耗散和波致泥沙侵蚀的时空分布,发现波浪由外海向近岸传播过程中,波-波相互作用导致能量由高频向低频转换,周期和波长逐渐增大,近底层轨道流速增大,能量密度增高;阐明白帽破碎是维持深水区波浪能量平衡和限制波高成长的主要机制,底摩擦耗能和水深诱导的破碎耗能是长江口横沙东滩和崇明东滩邻近海域波高衰减的主要原因;提出波浪产生的底部切应力与相对水深有关,当波浪传播到浅水区时,波长和周期越大,波浪切应力越大。研究揭示了与河口相距数百公里的远区台风能够对长江口波浪动力场产生明显影响,河口水下三角洲前缘是最容易受到波浪侵蚀的区域,研究成果弥补了目前关于陆架远区台风对河口波浪动力场影响研究的不足,对深化认识远区台风对长江口动力环境、地貌演变、航运安全和滩涂保护等有重要科学意义。  相似文献   
59.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
60.
Surface waves are the roughness element of the ocean surface. The parameterization of the drag coefficient of the ocean surface is simplified by referencing to wind speed at an elevation proportional to the characteristic wavelength. The dynamic roughness is analytically related to the drag coefficient. Under the assumption of fetch limited wave growth condition, various empirical functions of the dynamic roughness can be converted to equivalent expressions for comparison. For datasets covering a wide range of the dimensionless frequency (inverse wave age), it is important to account for the variable rate of wave development at different wave ages. As a result, the dependence of the Charnock parameter on wave age is nonmonotonic. Finally, the analysis presented here suggests that the significant wave steepness is a sensitive property of the ocean surface and a single variable normalization of the dynamic roughness using a wavelength or wave height parameter actually produces more robust functions than bi-variable normalizations using wave height and wave slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号