首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

2.
To simulate the wave-induced response of coupled pore fluids and a solid skeleton in shallow water, a set of solutions with different formulations (fully dynamic, partly dynamic, and quasi-static) corresponding to each soil behavior assumption is presented. To deal with Jacobian elliptic functions involved in the cnoidal theory, a Fourier series approximation is adopted for expanding the boundary conditions on the seabed surface. The parametric study indicates the significant effect of nonlinearity for shallow water wave, which also enhances the effect of soil characteristics. The investigation of the applicability of reduced formulations reveals the necessity of a partly or even fully dynamic formulation for the wave-induced seabed response problem in shallow water, especially for thickened seabed. The analysis of liquefaction in the seabed indicates that the maximum depth of liquefaction is shallower, and the width of liquefaction is broader under cnoidal wave loading. The present analytical model can provide more reasonable result for the wave-induced seabed response in the range of shallow water wave.  相似文献   

3.
In this paper the wave action balance equation in terms of frequency-direction spectrum is derived.A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber space through a Jacobian transformation in the wave action balance equation.The physical properties of the Jacobian incorporating the effects of water depths are discussed.The results provide a theoretical basis of wave action balance equations and ensure that the wave balance equations used in the SWAN or other numerical models are correct.It should be noted that the Jacobian is omitted in the wave action balance equations which are identical to a conventional action balance equation.  相似文献   

4.
A technique is developed for including the effects of dissipation due to wave breaking in two-dimensional elliptic models based on the mild-slope wave equation. This involves exploration of convergence properties pertaining to iteration due to presence of the nonlinear wave breaking parameter in the governing equations as well as new boundary conditions that include wave-breaking effects. Five wave-breaking formulations are examined in conjunction with the resulting model, which is applied to tests involving a sloping beach, a bar-trough bottom configuration, shore-connected and shore-parallel breakwaters on a sloping beach, and two real-world cases. Model results show that three of the formulations, when used within the context of the modeling scheme presented here, provide excellent results compared to data.  相似文献   

5.
Based on the extended mild-slope equation, the wind wave model (WWM; Hsu et al., 2005) is modified to account for wave refraction, diffraction and reflection for wind waves propagating over a rapidly varying seabed in the presence of current. The combined effect of the higher-order bottom effect terms is incorporated into the wave action balance equation through the correction of the wavenumber and propagation velocities using a refraction–diffraction correction parameter. The relative importance of additional terms including higher-order bottom components, the wave–bottom interaction source term and wave–current interaction that influence the refraction–diffraction correction parameter is discussed. The applicability of the proposed model to calculate a wave transformation over an elliptic shoal, a series of parallel submerged breakwater induced Bragg scattering and wave–current interaction is evaluated. Numerical results show that the present model provides better predictions of the wave amplitude as compared with the phase-decoupled model of Holthuijsen et al. (2003).  相似文献   

6.
The elliptic mild slope equation is used to simulate linear wave propagation over variable seabed topography with mild slopes.The governing equation is discretized by the finite difference method.Ba-sed on the BI-CGSTAB technique.an attractive variant of BI-Conjugate Gradients(BI-CG)method,theobtained linear algebraic system of equations is solved.Numerical experiments show that the BI-CGSTABmethod is efficient for solving the elliptic mild slope equation.The results obtained by the BI-CGSTAB-Ba-sed method are much the same as those obtained by other authors with different solution methods,but theconvergence rate is much faster than that of other methods.  相似文献   

7.
The sediment transport parameter helps determining the amount of sediment transport in cross-shore direction. The sediment transport parameter therefore, should represent the effect of necessary environmental factors involved in cross-shore beach profile formation. However, all the previous studies carried out for defining shape parameter consider the parameter as a calibration value. The aim of this study is to add the effect of wave climate and grain size characteristics in the definition of transport rate parameter and thus witness their influence on the parameter. This is achieved by taking the difference in between “the equilibrium wave energy dissipation rate” and “the wave energy dissipation rate” to generate a definition for the bulk of sediment, dislocating within a given time interval until the beach tends reach an equilibrium conditions. The result yields that empirical definition of transport rate parameter primarily governs the time response of the beach profile. Smaller transport rate value gives a longer elapsed time before equilibrium is attained on the beach profile. It is shown that any significant change in sediment diameter or wave climate proportionally increases the value of the shape parameter. However, the effect of change in wave height or period on sediment transport parameter is not as credit to as mean sediment characteristics.  相似文献   

8.
A stochastic simulation technique was used with ship wave observations, which form the largest world-wide data base of wave information. Twenty years of wave parameter (height, period, and direction) observations from the Comprehensive Ocean–Atmosphere Data Set (COADS) were used as the input data. Simulations were compared to four years of wave parameters from a National Data Buoy Center (NDBC) data buoy near Monterey Bay, CA. The comparisons are satisfactory with differences mainly caused by biases between ship observations and buoy data. The stochastic simulation technique is attractive because it is computationally efficient and few decisions are required for its application. The applied techniques can be employed with global COADS data to simulate wave conditions at many world-wide locations where measurements and hindcasts by computer models do not exist.  相似文献   

9.
四叉树网格下的椭圆型缓坡方程数值模型研究   总被引:1,自引:1,他引:0  
唐军  李巧生  沈永明 《海洋学报》2013,35(5):162-168
波浪是近岸海域关键的水动力因素之一。考虑到近岸地形复杂、波浪演化显著的特点,建立了四叉树网格体系下的椭圆型缓坡方程数值模型,采用有限体积法对模型进行数值离散,应用GPBiCG(m, n)算法求解离散后的控制方程。模型中根据波浪波长布局计算网格,生成多层次四叉树网格,对复杂计算域有较好的适应性,并且在离散和方程求解中无需引入形函数、不产生复杂的交叉项,节约了存储空间和计算时间。将模型成功应用于物理模型实验及Acapulco海湾的波浪场数值模拟,结果表明该模型能够准确、高效地模拟近岸波浪场,可为近岸波浪场的模拟提供一定的理论和技术支持。  相似文献   

10.
《Coastal Engineering》2004,51(1):17-34
Approximate equations for the elliptic mild slope equation are derived based on Padé approximation and used as absorbing boundaries. The new boundary equations can absorb the incident waves for high range of wave incidence angle. In addition, the new boundary equations can be used iteratively to refine the solution by eliminating reflections from the boundaries. An iterative conjugate gradient scheme has been used to solve the elliptic water wave equation and the new boundary equations. The model developed can accommodate for wave diffraction, refraction and reflections from structures with wide range of wave angles at the boundaries. The new model has been tested for several cases. The model compares very well with other models.  相似文献   

11.
J.M. Zhan  Z. Dong  W. Jiang  Y.S. Li 《Ocean Engineering》2010,37(14-15):1261-1272
A numerical wave tank is first established using the Navier–Stokes equations and the VOF method assuming laminar flow. The standard kε, realizable kε and RNG kε turbulent models are then incorporated to the numerical tank. An effective numerical method for wave absorption utilizing the energy-dissipating property of porous media is also included. To validate the accuracy of the proposed models, the propagation of a solitary wave, where analytical solution is available for comparison, is first simulated. This is followed by the simulation of irregular wave runup on a composite seawall, wave propagation over submerged bars and wave refraction and diffraction over an elliptic shoal, where experimental data are available for comparison. All computed results agree well with either the analytical solution or the experimental data.  相似文献   

12.
非结构化网格下椭圆型缓坡方程的数值求解   总被引:4,自引:4,他引:0       下载免费PDF全文
魏美芳  唐军  沈永明 《海洋学报》2009,31(2):159-164
椭圆型缓坡方程是一种用线性波浪理论研究近岸波浪传播变形的有效波浪数学模型。非结构化网格下的有限容积法不仅对复杂边界的适应性好,还能保证迭代求解过程的守恒性。建立了非结构化网格下的椭圆型缓坡方程数值模型。在模型中采用非结构化网格下的有限容积法对椭圆型缓坡方程进行了数值离散,结合GPBiCG(m,n)算法求解离散方程。数值计算结果表明,该数值模型可有效地用于模拟近岸缓坡区域复杂边界下波浪的传播。  相似文献   

13.
In this paper, author employed Jacobi elliptic function expansion method to build the new wave solutions of time fractional modified Camassa–Holm equation which is completely integrable dispersive shallow-water equation. In ocean engineering, Camassa–Holm equation is generally used as a tool in computer simulation of the water waves in shallow sees, coastal and harbors. The obtained solutions show that the Jacobi elliptic function expansion method (JEFEM) which based on Jacobi elliptic functions is an efficient, reliable, applicable and accurate tool for analytic approximation of a wide variety of nonlinear conformable time fractional partial differential equations.  相似文献   

14.
适于模拟不规则水域波浪的缓坡方程两种数值模型比较   总被引:1,自引:1,他引:0  
本文分析比较了适于不规则水域波浪模拟的椭圆型缓坡方程两种数值模型。两种数值模型均采用有限体积法离散,分别基于四叉树网格和非结构化三角形网格建立。首先结合近岸缓坡地形上波浪传播的经典物理模型实验对两种数值模型分别进行了验证,并结合计算结果对比分析了两种模型的计算精度和效率。计算结果表明,两种数值模型均可有效地模拟近岸波浪的传播变形;相对非结构化三角形网格下的模型,基于四叉树网格建立的数值模型在数值离散和求解过程中无需引入形函数、不产生复杂的交叉项,离散简单,易于程序实现,且节约计算存储空间,计算效率高。  相似文献   

15.
A non-hydrostatic algorithm for the Regional Oceanic Modeling System (ROMS) is proposed. It is based on a decomposition technique for hydrostatic and non-hydrostatic pressure. The algorithm has a pressure-correction scheme with split-explicit time-stepping for baroclinic and barotropic vertical modes with a free surface. The algorithm implementation requires solving a Poisson equation for a non-hydrostatic pressure that has a non-symmetric matrix in discrete form. The efficiency of a different class of solvers and preconditioners were tested. The algorithm is successfully implemented with several examples where non-hydrostatic effects are important. These include standing external gravity waves; strongly nonlinear internal wave generation and transformation; stratified shear instability and its associated mixing; and nonlinear internal tidal generation over a ridge. The corresponding changes in the pre-processing and post-processing infrastructure in the existing hydrostatic ROMS code were performed to implement parallel elliptic solvers and a new set of dynamical equations.  相似文献   

16.
The paper provides a joint distribution of significant wave height and characteristic surf parameter. The characteristic surf parameter is given by the ratio between the slope of a beach or a structure and the square root of the characteristic wave steepness in deep water defined in terms of the significant wave height and the spectral peak period. The characteristic surf parameter is used to characterize surf zone processes and is relevant for e.g. wave run-up on beaches and coastal structures. The paper presents statistical properties of the wave parameters as well as an example of results corresponding to typical field conditions.  相似文献   

17.
The characteristics of directional spread parameters at intermediate water depth are investigated based on a cosine power ‘2s' directional spreading model. This is based on wave measurements carried out using a Datawell directional waverider buoy in 23 m water depth. An empirical equation for the frequency dependent directional spreading parameter is presented. Directional spreading function estimated based on the Maximum Entropy Method is compared with those obtained using a cosine power ‘2s' parameter model. A set of empirical equations relating the directional spreading parameter corresponding to the peak of wave spectrum to other wave parameters like significant wave height and period are obtained. It shows that the wave directional spreading at peak wave frequency can be related to the non-linearity parameter, which allows estimation of directional spreading without reference to wind information.  相似文献   

18.
This paper presents the results of a study aimed at quantifying the time–response of harbour basins to long waves under resonance conditions. On the basis of numerical simulations reproducing long waves in the yacht harbour of Rome (Ostia, Italy), it shows that the results valid for periodic forcing waves, acting for an infinitely long time, as those provided by models based on elliptic equations like the Helmoltz and the mild-slope equations, can be misleading with respect to the more realistic ones that can be obtained using time-varying wave equations. Taking advantage of the similarity between the processes studied here and a simple one-dimensional resonator, a method is also proposed to roughly estimate a time–response parameter of each mode of the harbour, using results from steady-state numerical model results, commonly applied for studying harbour resonance in engineering practice. On the basis of further numerical simulations, aimed at reproducing schematic harbour layouts, the effect on resonance of the position of the entrance and of an outer harbour is studied. The results indicate that the effects of design solutions to reduce resonance, by placing the entrance at the middle of the harbour, or using the outer harbour as a resonator, can be correctly evaluated only when considering the time needed for the oscillations to fully develop.  相似文献   

19.
The present study is employing the equivalent irregular wave approach to predict the wave loads for a ship encountering the worst sea state with respect to the critical dynamic loading parameter. Two different hydrodynamic numerical models, i.e. 3D pulsating source technique and 3D translating pulsating source technique, are applied to calculate the corresponding RAO of the ship moving in waves. Incorporating the RAO of the related physical properties, we can calculate the extreme value for the corresponding ship loading factor, which can be regarded as the worst sea state in the service lifetime of the ship. With the time and period of the occurrence of the corresponding extreme value, we can simulate the time history of the wave load in this period, which is so-called equivalent irregular wave approach. Comparing with the results calculated by the traditional equivalent regular wave approach, we find that the equivalent irregular wave approach can simulate the corresponding wave load more realistic, especially for dynamic pressure. Using the equivalent irregular wave approach can offer the effective and practical base for the ship structural analysis.  相似文献   

20.
The shape parameter helps determining the shape of equilibrium beach profile in terms of offshore distance and water depth. The shape parameter therefore, should represent the effect of all the environmental factors involved in beach profile formation, such as wave climate and sediment properties. However, all the previous studies carried out to define shape parameter only consider the effects of sediment characteristics in their definitions. The aim of this study is to add the effect of wave climate also in the definition of shape parameter. This is achieved by integrating wave energy dissipation rate per unit volume at the surf zone. The result yields equilibrium wave energy dissipation rate that leads to theoretical definition of equilibrium beach profiles involving the effects of both the grain size and the wave climate parameters. It is found that the sediment grain size and the incoming wave height affect the value of shape parameter; whereas, the effects of wave period can be neglected. By means of energy equation, it is also possible to observe in macro scale the strength of wave energy on beach profile for different grain sizes. The findings also bring about the possibility of defining shape parameter such that any two arbitrary beach profiles owning the same sediment grain sizes can have the opportunity to have different beach profile formations. Finally, by adding the effect of wave height in the definition of shape parameter the graphical representation of the parameter, previously given by Moore (1982) is improved herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号