首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The power performances of a point absorber wave energy converter(WEC) operating in a nonlinear multidirectional random sea are rigorously investigated. The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter. This is a new approach, and, as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea, avoids the inaccuracies resulting from using a first order linear wave model in the simulation process. The predicted results have been systematically analyzed and compared, and the advantages of using this new approach have been convincingly substantiated.  相似文献   

2.
In actual sea states, damage to offshore floating structures is usually caused by a few extreme waves or wave groups in an irregular wave train. Accurate simulation of the irregular wave trains can lay a solid foundation for understanding the local flow field and impact loads that would potentially cause such damage. This paper describes how the generation of a single extreme wave was investigated. Determination of the wave-maker motion for generating specified irregular wave trains is the key to this work. First, an experimental irregular wave train was decomposed into a certain number of small-amplitude waves. Fourier series expansion was performed to determine the amplitude and the initial phase angle of each wave component. Then a hydrodynamic transfer function was used to calculate the amplitude of the wave-maker motion associated with each wave component. Superposition was made on all the wave components to get the final wave-maker motion. During the numerical simulation, calculated horizontal velocity profiles of the extreme wave at different moments were analyzed and compared with experimental results, and a satisfactory agreement was obtained. In the simulation, VOF method was employed to capture the free surface, and a dissipation zone was used to deal with wave reflection.  相似文献   

3.
利用基于三维势流理论的Wasim软件,系统研究了在不同海况下大型豪华邮轮的耐波性能及作用在救生艇上的砰击载荷。首先计算豪华邮轮在规则波和不规则波中的运动响应,分析航速、浪向和海况对豪华邮轮运动响应的影响规律,然后计算救生艇在不同海况下砰击载荷的变化规律,根据变化规律评估救生艇在实际航行中的安全性。结果表明:豪华邮轮运动响应幅值随着航速和海况的增大整体呈增大趋势,规则波中横摇运动响应幅值在浪向90°时最大;当豪华邮轮处于4级和6级海况时救生艇不发生砰击;当豪华邮轮处于8级海况且航速大于10.29 m/s时救生艇发生砰击,为保证救生艇的安全,邮轮应避免在浪向120°和浪向150°下航行,此时建议邮轮以低于12.35 m/s的航速迎浪180°航行。  相似文献   

4.
极端波浪对海洋导管架平台的作用及其模型试验研究   总被引:4,自引:2,他引:2  
通过极端波浪对海洋导管架平台作用力的模型试验,对极端波浪的作用进行了探讨。首先在常规波浪力计算公式的基础上,提出了极端波浪作用下的简易计算方法,并结合国外相应研究成果,提出了三个简易计算表达式;在对模型试验数据的分析基础上,给出了上述三个简易计算公式中的系数,从而得到极端波浪作用下的波浪力计算表达式。  相似文献   

5.
Non-linear probability distributions for Morison-type wave loading are used to indicate the effect of drag forces on the expected fatigue damage and the expected extreme response of quasi-statically responding (members of) offshore structures. Results are compared with those from commonly used equivalent linear methods of analysis. It is found that the expected fatigue damage and the expected extreme response based on non-linear methods are approximately equal to results from linear methods when inertia is the dominant force. However, in the event of the drag forces forming a considerable part of the total wave loading, both fatigue damage and extreme response can significantly exceed those predicted by linear methods. The difference between the two methods is quantified in terms of a drag-inertia parameter, which is directly related to the sea state under consideration.  相似文献   

6.
We show how to calculate the encountered wave period distribution for a ship traveling with constant speed on a Gaussian random sea with a directionally distributed frequency spectrum.  相似文献   

7.
In order to determine the extreme sea-state encountered by oceangoing vessels,a method forthe prediction of wave parameters based on the data of long-term distribution sample is developed by useof the fitting approach with the Weibull probability functions and the power functions.As an example aspecial calculation result is given including the analysis of wave parameters for the data of the NorthAtlantic Basin and the computation of motion and load encountered by two container ships CSLR andCSBV in different loading conditions.All computation results are satisfactory compared with corre-sponding design results.  相似文献   

8.
Flapping wings located beneath or to the side of the hull of the ship are investigated as unsteady thrusters, augmenting ship propulsion in waves. The main arrangement consists of horizontal wing(s) in vertical oscillatory motion which is induced by ship heave and pitch, while rotation about the wing pivot axis is actively controlled. In this work we investigate the energy extraction by the system operating in irregular wave conditions and its performance concerning direct conversion to propulsive thrust. More specifically, we consider operation of the flapping foil in waves characterised by a spectrum, corresponding to specific sea state, taking into account the coupling between the hull and the flapping foil dynamics. The effect of the wavy free surface is accounted for through the satisfaction of the corresponding boundary conditions and the consideration of the wave velocity on the formation of the incident flow. Numerical results concerning thrust and power coefficients are presented, indicating that significant thrust can be produced under general operating conditions. The present work can be exploited for the design and optimum control of such systems extracting energy from sea waves for augmenting marine propulsion in rough seas, with simultaneous reduction of ship responses offering also dynamic stabilisation.  相似文献   

9.
Response Characteristics of Load on Vessels in Waves   总被引:2,自引:0,他引:2  
Considering the requirement of direct design and fatigue test for ships and floating structures byuse of FEM technique,a computational procedure of spectral analysis for wave load on the hull surface is de-veloped in this paper.The response of hydrodynamic pressure on the body surface to a designated sea state forships and floating structures is calculated by use of the revised strip method with the hull bound perturbationflow concept.The spectral function of wave load for the defined point on the body surface can be determinedfrom the Wiener-Khinhin theorem and the characteristic load value can be also obtained from spectral mo-ment analysis.A container ship is taken as a computational example and the sample of wave load with a cer-tain probability and corresponding encountered frequency is provided.  相似文献   

10.
The article presents a practical approach to transform a wave energy spectrum from encounter domain to absolute domain. This problem has its specific relevance, when shipboard sea state estimation is conducted by the wave buoy analogy; notably for some particular implementation solving for the sea state directly in the encounter domain. In this context, the encounter domain is that observed from a ship when it advances in a seaway, whereas the absolute domain is that corresponding to making observations from a fixed point in the inertial frame. Spectrum transformation can be uniquely carried out if the ship sails “against” the waves (beam to head sea) but in following sea conditions there exists no unique solution to the problem. Instead, a reasonable approach valid for practical engineering must be applied, and the article outlines one viable solution that can be used to transform a wave spectrum from encounter to absolute domain. Specifically, two pseudo algorithms are presented, and good performance is achieved with both algorithms when they are tested at different operational scenarios.  相似文献   

11.
A parametric study of wave loads on trimaran ships traveling in waves   总被引:3,自引:0,他引:3  
In this paper, we present a spectral analysis based on wave loads to select suitable side-hull arrangements for a trimaran ship traveling in waves. Neglecting the steady flow effect, the three-dimensional source-distribution method, using a pulsating source potential incorporating the panel method, is adopted to solve the corresponding hydrodynamic coefficients. The significant values for wave loads, including shear forces, bending moments, and torsion moments at different locations on the main hull and connected deck with respect to different staggers and clearances, are derived by the spectral analysis. Several ship speeds and wave headings are also considered for comparison. This study offers more information for selecting the side-hull arrangement from the viewpoint of wave loads on trimaran ships, which may be regarded as helpful references for seakeeping design of these types of ships.  相似文献   

12.
依据雷诺方程和k-ε紊流模型,按流体体积(VOF)法追踪波浪自由表面,采用源造波法,建立数值波浪水槽,数值模拟波浪对复杂结构形式海堤的作用.数值模拟结果与经验公式、物理模型试验结果基本符合,说明所建立的数值波浪水槽合理可行.揭示了不规则波作用下复杂结构形式海堤波浪力分布规律,模拟了堤前波浪形态变化,为探讨合理的海堤结构形式提供了依据.  相似文献   

13.
Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0?1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.  相似文献   

14.
波浪能是一种清洁、可再生的新型能源,波浪能发电装置在海上作业时会受到变化的风、浪、流载荷作用,需要系泊系统保证其稳性和安全性。以适用于中国南海500 m水深的振荡双浮体式波浪能发电装置为研究对象,运用频域计算与时域计算结合的方法对双浮体及其系泊系统的运动响应和动力载荷进行计算,获取极端海况与工作海况下浮体运动和系泊缆索张力的时历数据。参照BV船级社NR-493规定的海上浮式结构物系泊安全系数规范,对3种系泊方案进行安全校核和对比分析。选定其中一种系泊方案,通过改变系泊系统以及能量转换器(PTO)的参数,探究参数变化对双体波浪能装置运动响应以及系泊系统特性的影响,为类似应用于深水的双体波浪能装置系泊系统的设计提供参考。  相似文献   

15.
The present study introduces a design wave method for estimating the extreme horizontal slow-drift motion of moored floating offshore platforms under extreme conditions. Here, the design wave refers to an irregular incident wave of short duration that induces the extreme response of the desired return period. The present method is composed of the following four steps: linearization of the dynamic system, probabilistic analysis of the second-order Volterra series, generation of the irregular design waves, and the fully-coupled nonlinear simulations. For generating the design waves, two different conditioning methods are presented and compared: the conditioning of the extreme response amplitude and the conditioning of the most likely extreme response profile. The procedure was applied to a deep-water semi-submersible, and the results appeared to be promising compared to the full-length nonlinear simulations.  相似文献   

16.
杭州湾外围海域岛礁众多,波浪传播机制复杂。为了了解该海域的波浪分布特征,采用MIKE 21 SW模块建立了杭州湾海域波浪数值模型,利用实测波浪资料对模型进行了验证,结果表明该模型适用于模拟杭州湾海域的波浪传播。利用1970—2002年嵊山海洋站实测极值波浪资料推算50年一遇波浪要素,将其作为模型边界条件,对杭州湾海域50年一遇的设计波浪进行了模拟,并对该海域的波浪传播特征进行了分析。结果表明,杭州湾内波高较之外海明显减小,外围众多岛礁起到了很好的遮挡保护作用。  相似文献   

17.
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.  相似文献   

18.
通过波浪水槽实验,对海平面变化造成的波浪动力因素改变引起的沙质岸滩形态响应开展机理性研究。实验采用1∶10单一沙质斜坡概化岸滩,利用3种不同实验水深模拟海平面变化,考虑椭圆余弦波、非规则波、规则波和孤立波4种类型波浪作用。实验对波浪在斜坡上的传播变形、破碎、上爬和回落过程的波高及波浪作用后的岸滩地形进行了测量。实验结果表明,椭圆余弦波、规则波和非规则波作用下,平衡岸滩呈现出滩肩形态,孤立波作用下则呈沙坝形态。海平面上升造成波浪动力增强,沙质岸滩平衡剖面形状基本保持不变向岸平移,槽谷、滩肩、沙坝位置以及岸线蚀退距离,均呈现出良好规律性。  相似文献   

19.
The performance of coastal vertical seawalls in extreme weather events is studied numerically, aiming to provide guidance in designing and reassessing coastal structures with vertical wall. The extreme wave run-up and the pressure on the vertical seawall are investigated extensively. A time-domain higher-order boundary element method (HOBEM) is coupled with a mixed Eulerian-Lagrangian technique as a time marching technique. Focused wave groups are generated by a piston wave-maker in the numerical wave tank using a wave focusing technique for accurately reproducing extreme sea states. An acceleration-potential scheme is used to calculate the transient wave loads. Comparisons with experimental data show that the extended numerical model is able to accurately predict extreme wave run-ups and pressures on a vertical seawall. The effects of the wave spectrum bandwidth, the wall position and the wave nonlinearity on the wave run-up and the maximum wave load on the vertical seawall are investigated by doing parametric studies.  相似文献   

20.
Real sea conditions are characterized by multidirectional sea waves. However, the prediction of hull load responses in oblique waves is a difficult problem due to numeral divergence. This paper focuses on the investigation of numerical and experimental methods of load responses of ultra-large vessels in oblique regular waves. A three dimensional nonlinear hydroelastic method is proposed. In order to numerically solve the divergence problem of time-domain motion equations in oblique waves, a proportional, integral and derivative (PID) autopilot model is applied. A tank model measurement methodology is used to conduct experiments for hydroelastic responses of a large container ship in oblique regular waves. To implement the tests, a segmented ship model and oblique wave testing system are designed and assembled. Then a series of tests corresponding to various wave headings are carried out to investigate the vibrational characteristics of the model. Finally, time-domain numerical simulations of the ship are carried out. The numerical analysis results by the presented method show good agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号