首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   277篇
  国内免费   252篇
测绘学   116篇
大气科学   111篇
地球物理   554篇
地质学   426篇
海洋学   433篇
天文学   7篇
综合类   139篇
自然地理   972篇
  2024年   12篇
  2023年   25篇
  2022年   82篇
  2021年   133篇
  2020年   105篇
  2019年   120篇
  2018年   99篇
  2017年   99篇
  2016年   115篇
  2015年   109篇
  2014年   148篇
  2013年   157篇
  2012年   108篇
  2011年   122篇
  2010年   96篇
  2009年   141篇
  2008年   110篇
  2007年   138篇
  2006年   144篇
  2005年   152篇
  2004年   79篇
  2003年   97篇
  2002年   60篇
  2001年   66篇
  2000年   64篇
  1999年   39篇
  1998年   24篇
  1997年   35篇
  1996年   16篇
  1995年   12篇
  1994年   13篇
  1993年   7篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1972年   1篇
排序方式: 共有2758条查询结果,搜索用时 93 毫秒
61.
62.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
63.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
64.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
65.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
66.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
67.
Thrombolites are a common component of carbonate buildups throughout the Phanerozoic. Although they are usually described as microbialites with an internally clotted texture, a wide range of thrombolite textures have been observed and attributed to diverse processes, leading to difficulty interpreting thrombolites as a group. Interpreting thrombolitic textures in terms of ancient ecosystems requires understanding of diverse processes, specifically those due to microbial growth and metazoan activity. Many of these processes are reflected in thrombolites in the Cambrian Carrara, Bonanza King, Highland Peak and Nopah formations, Great Basin, California, USA; they comprise eight thrombolite classes based on variable arrangements and combinations of depositional and diagenetic components. Four thrombolite classes (hemispherical microdigitate, bushy, coalescent columnar and massive fenestrated) contain distinct mesoscale microbial growth structures that can be distinguished from surrounding detrital sediments and diagenetic features. By contrast, mottled thrombolites have mesostructures that dominantly reflect post‐depositional processes, including bioturbation. Mottled thrombolites are not bioturbated stromatolites, but rather formed from disruption of an originally clotted growth structure. Three thrombolite classes (arborescent digitate, amoeboid and massive) contain more cryptic textures. All eight of the thrombolite classes in this study formed in similar Cambrian depositional environments (marine passive margin). Overall, this suite of thrombolites demonstrates that thrombolites are diverse, in both internal fabrics and origin, and that clotted and patchy microbialite fabrics form from a range of processes. The diversity of textures and their origins demonstrate that thrombolites should not be used to interpret a particular ecological, evolutionary or environmental shift without first identifying the microbial growth structure and distinguishing it from other depositional, post‐depositional and diagenetic components. Furthermore, thrombolites are fundamentally different from stromatolites and dendrolites in which the laminae and dendroids reflect a primary growth structure, because clotted textures in thrombolites do not always reflect a primary microbial growth structure.  相似文献   
68.
地球观测数据共享是地球科学和相关学科科研活动中非常重要的基础性工作,是对地观测信息生命周期中的重要环节。受到由资源提供者、资源消费者和资源加工者组成的社会生态系统发展变化的影响,共享模式经历了无共享、项目共享、部门共享、社会共享等渐进的4个发展阶段,并呈现出区域差异和阶段差异。地球观测数据共享的概念体系包含数据开放、数据共享、数据互联等不同层次的问题,并受到信息技术等使能技术的驱动。其中开放性代表数据在网络中可被访问的状态,共享性是对于数据重复使用的授权和模式,互联性则是强调可共享数据资源在科学含义上的相互理解。而地球观测数据共享的技术体系则包含数据开放技术、数据共享技术和数据出版与引用技术。目前地球观测领域的数据共享正在经历巨大的文化、政策、技术和应用变革,下一代的地球观测数据设施集中体现了数据的共享和协作,并将呈现国际化、多学科化、标准化、设施化、大数据化和公众社会化等新的技术特征,将对相关科学活动产生重大影响。  相似文献   
69.
水权交易对生态环境影响研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
在经济社会发展受到区域水资源总量限制的情况下,水权交易作为解决当今世界严峻水资源危机的重要手段之一,已在国内外进行了广泛的实践。水权交易改变了水资源的时空配置,对水生态和水环境产生有利或不利的影响,然而关于水权交易对生态环境影响的研究尚未有系统的梳理。总结了水权交易对水资源系统影响研究的主要发展历程,着重论述了水权交易对水资源系统影响的4个重点研究方面:可交易生态环境水权的研究、水权交易对水量、水生态、水环境影响的研究。未来应当加强水权交易对生态环境影响的定量研究,进一步提升水权交易对水质、地下水、退水、陆生生态环境影响的研究,明确不同交易类型的不同影响,还应考虑不确定性因素的影响。  相似文献   
70.
Coevolution between terrestrial ecosystem and Earth environment is a hot research topic in both biology and geology. Last progresses in these field are reported from following research subjects: evolution of jawed vertebrates(gnathostomata) from Silurian; occurrence of earliest forests from Devonian of Xinjiang; biodiversity of insects in amber from Cretaceous of Myanmar; Evolution of primates and geochemistry studies from Eocene/Oligocene; studies of Longdan fauna from Lingxia basin, Gansu Province of earlier Pleistocene and endemic cloven-breast fishes from Pliocene Tibet; the correlations thick-boned fish,Hsianwenia wui, and the aridification of the Qaidam Basin; monsoon climate and its impact on biodiversity; study on the flora from Mankang, Tibet of Miocene and its palaeoclimate; depositional environment and its impact on the preservation of fossils; contraction of high resolution Stratigraphic series by using data of paleomagnetism and mammal fossils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号