首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   12篇
  国内免费   24篇
地球物理   5篇
地质学   120篇
海洋学   3篇
综合类   15篇
自然地理   4篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   8篇
  2005年   2篇
  2004年   33篇
  2003年   5篇
  2002年   12篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   5篇
  1988年   2篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
121.
岩石圈地幔中的金刚石及其矿物包裹体的研究进展   总被引:1,自引:1,他引:0  
金刚石及封存于其中的矿物包裹体对于研究金刚石的成因以及古老岩石圈地幔、超深地幔的性质和地幔过程具有重要的研究意义,是国内外地质学家们的研究热点。大多数金刚石来源于岩石圈地幔,根据包裹体相对于寄主金刚石形成的时间可分为先成包裹体、同生包裹体和后生包裹体,包裹体属于哪种类型直接关系到数据所代表的意义,根据包裹体源区的岩石类型,通常将包裹体分为P/U型和E型,介绍了2种类型包裹体包含的矿物种类,并对出现较多的橄榄石、单斜辉石、斜方辉石、石榴石、铬铁矿和硫化物包裹体的矿物学特征进行了详细描述,归纳了金刚石及其矿物包裹体的主要研究方向:包裹体矿物的化学成分、金刚石的碳同位素组成、金刚石形成的温度、压力及年龄,综述了克拉通岩石圈地幔金刚石及其矿物包裹体的成因,总结了我国金刚石中包裹体的研究成果,分析了国内研究工作与国际上的差距。  相似文献   
122.
史清琴  张金富 《云南地质》2008,27(4):408-415
我省开展金刚石普查和找矿的重点地区是大理海东-马关八寨新生代基性-超基性火山角烁岩筒分布地区。其次是腾冲新近纪及第四纪火山群分布地区及腾冲-瑞丽沿瑞丽江两岸冲积层、冲积阶地沉积分布区;第三是姚安及镇源新生代火山岩-次火山喷发侵入及煌斑岩分布区。  相似文献   
123.
Kimberlite is an effective vector for researches and discussions on mantle dynamics process, lithosphere evolution and other major scientific problems, which plays an important role in revealing the forming environment, origin, source and prospecting of diamond. Currently, the developing research process of Kimberlite is still hampered by several key scientific problems, such as the evolution and the significance of the Kimberlite, evaluation for diamond potential and so on. Based on high-pressure melt simulation experiments, researches about matrix mineral, fine syngenetic inclusion (cognate xenolith?) and cryptocrystalline in the margin area of Kimberlite pipe, it seems that the initial composition features of Kimberlitic magma can be effectively analyzed. However, these experiments and researches are not only difficult to identify source characteristics of Kimberlitic magma efficiently, but also difficult to distinguish those effects on magma from which is assimilation/contamination, fluid fractionation or devitrification. Lacking of systematic research reports about recrystallization and (or) regrowth mineral on micro-composition and micro-structure, it is hard to efficiently and accurately analyze the changes and degassing effects in Kimberlitic magma, so far as to reveal the process of Kimberlitic magma evolution. Although Kimberlite diamond potential can be evaluated based on mineral assemblage, water content of olivine, there still exist some kinds of problems, like the index system being too simple, and the data accumulation being too little. Carrying out the fine micro-fabric studies between diamond-bearing Kimberlite and non diamond-bearing one can establish the scientific foundation for rebuilding the Kimberlitic magma evolution mechanism effectively and reveal the response to deep geological process. Meanwhile, on the basis of known diamond mines, a model for initial grade prediction of diamond and analysis of preservation potential can be set up to realize final purpose to evaluate the diamond potential in unknown Kimberlite areas in effect validity.  相似文献   
124.
Prospecting for kimberlites and related rocks in till-covered terrains requires a methodology for recovering a few small grains within tens of kilograms samples, necessitating 1 ppb sensitivity or better. As part of reconnaissance survey for the kimberlite indicator minerals, i.e. pyrope garnet, picroilmenite, chromite and chromian diopside, the Geological Survey of Finland (GTK) developed such a system by significantly modifying and augmenting a 3″ Knelson Concentrator that accomplishes nearly complete recovery of moderately heavy minerals (>0.25 mm) from till samples.Diamondiferous kimberlites occur in the eastern Finland around the Kaavi–Kuopio and Kuhmo areas and much of the rest of the Karelian craton remains prospective based on the empirical evidence necessary for diamond preservation: thick (>200 km) lithospheric mantle, low heat flow and Archaean age rocks. A target area in Lapland, 20×50 km in size, was selected for a pilot study to test extraction of chromite for the (1) discrimination of regionally and locally derived populations, and (2) recognition of possible kimberlitic/lamproitic chromites. Area selection was based on the regional occurrence of a variety of mantle-derived rocks, the recovery of a chromian pyrope grain from till in 1996 and most importantly, the well-established Quaternary stratigraphy in the region. The sample material consisted of sixty-two 80-kg excavator and 40-kg shovel samples. Approximately 1000 chromite grains, almost exclusively 0.25–0.5 mm in diameter, were recovered and analysed by electron microprobe.Tills in the sampling area proved to contain at least two compositional populations of chromite. The first is present in almost every sample and is apparently derived from layered mafic intrusions distal to and up-ice from the study area. The second population consists of chromites with low Ti, high Cr and Mg similar to inclusions in diamond. It is present in approximately one third of the samples, concentrated in a couple of clusters within the target area and is therefore considered to be of more local derivation. Since no high-Ti, high-Cr chromites diagnostic for kimberlites and lamproites were present in the samples, the source for the low-Ti, high-Cr, high-Mg chromite grains remains uncertain, but is probably not kimberlitic. Although this apparently is a negative outcome for diamond exploration in the target area, the main goal of the study was realised by showing the applicability of the system to heavy mineral separation from Quaternary glacial deposits.  相似文献   
125.
The marine diamond deposits of southern Africa owe their existence to fluvial transport down the Orange River to the South Atlantic. On the coast, they were moved, sorted and concentrated by high-energy sea and wind conditions to create a veneer of diamondiferous gravels on the sea floor. Large scale, offshore production by De Beers Marine commenced in 1989 in Namibian waters. The company now acts as a contractor for Namdeb, a corporation owned jointly with the Namibian governments. Some junior public companies also produce diamonds by large-scale mechanized means and conduct extensive exploration programs. Two important developments have occurred recently. Firstly, equipment for the recovery of diamonds from the seabed has been successfully borrowed from other industries. Large drills from onshore civil engineering have been modified for marine sampling and mining. Remotely controlled, seabed-mounted, excavational systems have assumed a major role. The new systems allow both evaluation sampling and subsequent mining to be undertaken by similar or the same equipment, making the results compatible. They permit highly selective extraction and enhanced recovery of the gravels from irregular bedrock in water approaching 200 m deep. But none is universally applicable offshore, each being the preferred system under different conditions. Secondly, the total output of sea diamonds from Namibian waters has increased to 0.8 million carats annually and now exceeds that from all the country's onshore sources. An industry has become established. Corporate and individual perseverence, government encouragement, new technology, shareholders' risk finance, and De Beers' diamond marketing have all played a role in the success. Future diamond production may increase as companies meet the challenge of working lower grade, higher volume deposits, which will require new approaches to the mining process. With a decrease in the physical risk of marine mining, the most variable inputs in operational planning and production forecasting are recovered grade and throughout rate, together with equipment availability. The importance of reliable grade estimation from sufficient sampling density is widely perceived, but the greatest performance risk can involve the predicted excavation rate and 'mineability' of the seabed sediments. Published reserve statements would benefit from a requirement to specify the planned mining method, the consequent cutoff grade to be employed, and whether or not test mining has been undertaken.  相似文献   
126.
A unique xenolith of eclogite, 23×17×11 cm in size and 8 kg in weight, was found in the Udachnaya kimberlite pipe. One hundred twenty-four diamond crystals recovered from it were analyzed by a number of methods. The diamonds differ in morphology, internal structure, color, size, and composition of defects and impurities. The xenolith contains diamonds of octahedral and cubooctahedral habits. In cathodoluminescence, the octahedral crystals have a brightly glowing core with octahedral zones of growth and a weakly glowing rim. In the cores of these crystals the N impurity is mostly present in the B1 form (30 to 60%). At the same time, N in the rim is chiefly in the A form. The cubooctahedral crystals show a weak luminescence. The content of nitrogen and degree of its aggregation are close to those in the rim of octahedral crystals. The diversity of morphology and impurity composition of diamonds from the xenolith can be explained by their formation in two stages. At the first stage, the diamonds formed which became the cores of octahedra. After a long-time interruption, at the second stage of diamond formation crystals of cubooctahedral habit appeared and the octahedral crystals were overgrown. Wide variations in nitrogen contents in the xenolith crystals allowed their use to estimate the kinetics of aggregated nitrogen. The data obtained show that the aggregation of A centers into B1 centers in the diamonds is described by a kinetic reaction of an order of 1.5.  相似文献   
127.
马云 《云南地质》2007,26(2):249-252
大坝基础帷幕灌浆工程中采用新技术、新工艺,使工程质量大幅提高,也使这些新技也能在实践中得到发展和完善,为工程良好的质量和效益打下了坚实的基础。  相似文献   
128.
A.L. Jaques  P.R. Milligan 《Lithos》2004,77(1-4):783-802
The distribution of kimberlite, lamproite and related alkaline volcanism in Australia can be broadly related to the structure of the Australian continent and lithosphere. Diamondiferous kimberlites and lamproites, with the apparent exception of the weakly diamondiferous Orrorro kimberlites in the Adelaide Fold Belt, lie within the large Precambrian shield where seismic tomographic models and heat flow data indicate the presence of relatively cold, high seismic wave speed lithosphere (tectosphere) typically some 200 km thick or more beneath the Archaean cratons and up to 300 km in parts of central Australia. Many of the diamondiferous intrusions appear to lie at the margins rather than in the centre of the lithosphere domains. The highest concentration of diamondiferous intrusions (kimberlites and lamproites) is on and around the Kimberley Craton where seismic data indicate crustal thicknesses of 35–40 km and a lithosphere up to 275 km thick that is distinct from Proterozoic northern Australia.

Many, but clearly not all, of the intrusions show evidence of regional and local structural controls. Some are spatially associated with known crustal structures, especially regional faults. Others are aligned, either singly or in clusters, along or near discontinuities and/or gradients evident in regional scale potential field data, especially the total horizontal gradients of gravity data continued upward tens to hundreds of kilometres. Many of these features are not evident in the original datasets as their signatures are masked by shorter wavelength (near surface) anomalies. In some cases, the kimberlites and associated rocks lie within crustal blocks and domains defined by discontinuities in the potential field data rather than at domain boundaries.

Our overview suggests that analysis of potential field data, especially horizontal gradients in upwardly continued potential field data, at all scales can assist definition of crustal and, potentially, lithospheric structures that may influence the distribution of diamond pipes. However, more definitive mapping of Australia's diamond prospective regions requires the integration of data on crustal structures, especially trans-lithospheric faults, and geodynamic settings with high resolution tomographic models and other geophysical, petrologic, and isotopic information on the nature of the lithosphere beneath the Australian continent.  相似文献   

129.
P. Deines  J.W. Harris 《Lithos》2004,77(1-4):125-142
Carbon isotope measurements on diamonds from the Letlhakane kimberlite, and the analyses of their inclusions, permit the examination of km-scale mantle-composition variations by comparing the results with those for the nearby Orapa kimberlite. Diamonds from Letlhakane have a wide range in carbon isotopic composition (−3‰ to −21‰); however, the relative abundance of diamonds depleted in 13C is significantly lower than in the Orapa kimberlite. Most of the 13C-depleted diamonds belong to the eclogictic or websteritic paragenesis. The relative abundance of inclusions in diamonds and their composition indicate that there are significant differences in petrology in the mantle below the two locations. At Letlhakane, peridotitic compositions are more prevalent than at Orapa and the protolith of P-Type inclusions in diamonds may have experienced a higher degree of partial melting at Letlhakane compared to Orapa. P/T estimates for both W- and E-Type diamonds indicate that a region of 13C-depletion may exist beneath the two kimberlites. The relationships between carbon isotopic composition of the host diamond and the Al2O3/Cr2O3 ratios of their websteritic and eclogitic garnet inclusions indicate that the low δ13C regions may represent a primary mantle feature, unrelated to a crustal component.  相似文献   
130.
Chemical compositions were determined on mineral inclusions recovered from 290 microdiamonds (<1 mm) from 8 operating diamond mines in Yakutia. The sampled diamond mines include Mir, Udachnaya, Internatsionalnaya, Aykhal, Sytykanskaya, Yubileynaya, Komsomolskaya and Krasnopresnenskaya. The mineral inclusions include both ultramafic (peridotitic) suite (U-type) and eclogitic suite (E-type) examples. Olivines, chromites, Cr-pyropes, Cr-diopsides and enstatite were studied from U-type diamonds. Mg–Ca–Fe-garnets and omphacitic clinopyroxenes were studied from E-type microdiamonds. Abundances and compositions of these inclusions were compared with published and unpublished data on inclusions available from approximately 2000 macrodiamonds (>1 mm) from the same sources, and worldwide data for olivines and chromites. Although there are general similarities, notable exceptions were detected in about 10% of the inclusions from microdiamonds. For each of the pipes, anomalous compositions occur between the micro- and macrodiamond inclusions, but in different proportions, sometimes as high as 50% of the inclusions. Our study has demonstrated that mineral inclusions in microdiamonds are considerably more variable in their compositions and parageneses compared with inclusions in macrodiamonds.

Significant compositional anomalies in inclusions from microdiamonds include: (1) garnets containing pyroxene solid solution (majoritic component) both in U- and E-type microdiamonds from three pipes: Yubileynaya, Komsomolskaya and Krasnopresnenskaya. The moles of Si (pfu) in these garnets range from 3.07 to 3.13 and as high as 3.29, on the basis of 12 oxygens, along with a notable contents of Na2O in two eclogitic garnets (0.43 and 0.93 wt.%) and uniquely high Cr2O3 and CaO contents in an ultramafic garnet of wehrlitic paragenesis; (2) coexisting wehrlitic garnets in a single microdiamond, one majoritic, the other normal, both with distinct +Eu anomalies, considered as signatures of crustal protoliths for the precursors to these garnets; (3) olivines with relatively low Fo (86–89) and high-NiO contents (0.46–0.64 wt.%), from Yubileynaya and Sytykanskaya microdiamonds; (4) chromites containing high-TiO2 (up to 4.7 wt.%) and some extremely rich in MgO (Mg# 80). It is concluded that many of these compositional features observed may be related to a deeper origin for the microdiamond source region (>300 km), for at least a 10–30% portion of microdiamonds from each Yakutian pipe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号