首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7431篇
  免费   1007篇
  国内免费   1887篇
测绘学   989篇
大气科学   1125篇
地球物理   1587篇
地质学   3736篇
海洋学   1143篇
天文学   348篇
综合类   538篇
自然地理   859篇
  2024年   15篇
  2023年   72篇
  2022年   149篇
  2021年   207篇
  2020年   208篇
  2019年   289篇
  2018年   224篇
  2017年   323篇
  2016年   321篇
  2015年   349篇
  2014年   427篇
  2013年   527篇
  2012年   428篇
  2011年   450篇
  2010年   384篇
  2009年   498篇
  2008年   599篇
  2007年   578篇
  2006年   564篇
  2005年   496篇
  2004年   471篇
  2003年   404篇
  2002年   347篇
  2001年   265篇
  2000年   289篇
  1999年   237篇
  1998年   203篇
  1997年   192篇
  1996年   126篇
  1995年   134篇
  1994年   125篇
  1993年   92篇
  1992年   72篇
  1991年   41篇
  1990年   47篇
  1989年   29篇
  1988年   31篇
  1987年   17篇
  1986年   18篇
  1985年   19篇
  1984年   14篇
  1983年   10篇
  1982年   5篇
  1981年   14篇
  1980年   8篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized aa lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands.  相似文献   
982.
A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977–1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5–1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño – Southern Oscillation (ENSO) events of 1982–1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean–atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian–Australian monsoon cycle. Sudden cooling of SSTs by 1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.  相似文献   
983.
A technique is proposed for Earths gravity field modeling on the basis of satellite accelerations that are derived from precise orbit data. The functional model rests on Newtons second law. The computational procedure is based on the pre-conditioned conjugate-gradient (PCCG) method. The data are treated as weighted average accelerations rather than as point-wise ones. As a result, a simple three-point numerical differentiation scheme can be used to derive them. Noise in the orbit-derived accelerations is strongly dependent on frequency. Therefore, the key element of the proposed technique is frequency-dependent data weighting. Fast convergence of the PCCG procedure is ensured by a block-diagonal pre-conditioner (approximation of the normal matrix), which is derived under the so-called Colombo assumptions. Both uninterrupted data sets and data with gaps can be handled. The developed technique is compared with other approaches: (1) the energy balance approach (based on the energy conservation law) and (2) the traditional approach (based on the integration of variational equations). Theoretical considerations, supported by a numerical study, show that the proposed technique is more accurate than the energy balance approach and leads to approximately the same results as the traditional one. The former finding is explained by the fact that the energy balance approach is only sensitive to the along-track force component. Information about the cross-track and the radial component of the gravitational potential gradient is lost because the corresponding force components do no work and do not contribute to the energy balance. Furthermore, it is shown that the proposed technique is much (possibly, orders of magnitude) faster than the traditional one because it does not require the computation of the normal matrix. Hints are given on how the proposed technique can be adapted to the explicit assembling of the normal matrix if the latter is needed for the computation of the model covariance matrix.Acknowledgments. Professor R. Klees is thanked for support of the project and for numerous fruitful discussions. The authors are also thankful to Dr. J. Kusche for useful remarks and to Dr. E. Schrama, his solid background in satellite geodesy proved to be very helpful. A large number of valuable comments were made by Dr. S.-C. Han, Dr. P. Schwintzer, and an anonymous reviewer; their contribution is greatly acknowledged. The satellite orbits used in the numerical study were kindly provided by Dr. P. Visser (Aerospace Department, Delft University of Technology). Access to the SGI Origin 3800 computer was provided by Stichting Nationale Computerfaciliteiten (NCF), grant SG-027.  相似文献   
984.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   
985.
We present a simplified method to simulate strong ground motion for a realistic representation of a finite earthquake source burried in a layered earth. This method is based on the stochastic simulation method of Boore (Boore, D. M., 1983, Bull. Seism. Soc. Am. 73, 1865–1894) and the Empirical Greens Function (EFG) method of Irikura (Irikura, K., 1986, Proceedings of the 7th Japan Earthquake symposium, pp. 151–156). The rupture responsible for an earthquake is represented by several subfaults. The geometry of subfaults and their number is decided by the similarity relationships. For simulation of ground motion using the stochastic simulation technique we used the shapping window based on the kinetic source model of the rupture plane. The shaping window deepens on the geometry of the earthquake source and the propagation characteristics of the energy released by various subfaults. The division of large fault into small subfaults and the method for accounting their contribution at the surface is identical to the EGF. The shapping window has been modified to take into account the effect of the transmission of energy released form the finite fault at various boundaries of the layered earth model above the source. In the present method we have applied the correction factor to adjust slip time function of small and large earthquakes. The correction factor is used to simulate strong motion records having basic spectral shape of 2 source model in broad frequency range. To test this method we have used the strong motion data of the Geiyo earthquake of 24th March 2001, Japan recorded by KiK network. The source of this earthquake is modelled by a simple rectangular rupture of size 24 × 15 km, burried at a depth of 31 km in a multilayered earth model. This rupture plane is divided into 16 rectangular subfaults of size 6.0 × 3.75 km each. Strong motion records at eight selected near-field stations were simulated and compared with the observed records in terms of the acceleration and velocity records and their response spectrum. The comparison confirms the suitability of proposed rupture model responsible for this earthquake and the efficacy of the approach in predicting the strong motion scenario of earthquakes in the subduction zone. Using the same rupture model of the Geiyo earthquake, we compared the simulated records from our and the EGF techniques at one near-field station. The comparison shows that this technique gives records which matches in a wide frequency range and that too from simple and easily accessible parameters of burried rupture.  相似文献   
986.
Insight regarding the mean and eddy motion in the Skagerrak/northern North Sea area is gained through an analysis of model-simulated currents, hydrography, kinetic energy and relative vorticity for the 2 years 2000 and 2001. In this a -coordinate ocean model is used. Since the tidal currents are generally strong in the area, care is exercised to distinguish the mesoscale (eddy) motion from higher-frequency motion such as tides, before computing the mean and eddy kinetic energy. The model-simulated response is first compared with available knowledge of the circulation in the area, and when available, also with sea-surface temperature obtained from satellite imagery. It is concluded that the model appears to faithfully reproduce most of what is known, in particularly the upper mixed layer circulation. An analysis of the mean and eddy kinetic energy reveals that many of the mesoscale structures found in the area are recurrent. This is particularly true for the structures off the southern tip of Norway. Also in general, areas of strong mean and eddy kinetic energy are co-located. The exception is the area off the southern tip of Norway, where the eddy kinetic energy is much larger than its mean counterpart. An analysis of the relative vorticity reveals that the variability found is due to the occurrence of recurrent anticyclonic eddies. It is hypothesized that these eddies are generated due to an offshore veering of the Norwegian coastal current (NCC) as it reaches the eastern end of the Norwegian Trench plateau. Here it becomes a free jet, which is then vulnerable to either barotropic instability caused by the horizontal shear in the jet-like structure of the NCC at this point, or a baroclinic (frontal) instability. The latter may come into play when the NCC veers offshore and its relatively fresh water meets the inflowing saline water of Atlantic origin, a frontogenesis that may become strong enough for cyclogenesis to take place. Due to the depth-independent nature of the model-generated eddies, the barotropic instability is the most likely candidate. It remains to resolve the reason for the offshore veering of the NCC. The most likely candidate mechanisms are vortex squeezing or simply that the coastline curvature is large enough for the NCC to separate from the coast in a hydraulic sense.Responsible Editor: Phil Dyke  相似文献   
987.
The Norilsk mining district is located at the northwest margin of the Tunguska basin, in the centre of the 3,000×4,000 km Siberian continental flood basalt (CFB) province. This CFB province was formed at the Permo-Triassic boundary from a superplume that ascended into the geometric centre of the Laurasian continent, which was surrounded by subducting slabs of oceanic crust. We suggest that these slabs could have reached the core–mantle boundary, and they may have controlled the geometric focus of the superplume. The resulting voluminous magma intruded and erupted in continental rifts and related extensive flood basalt events over a 2–4 Ma period. Cu–Ni–PGE sulfide mineralization is found in olivine-bearing differentiated mafic intrusions beneath the flood basalts at the northwestern margin of the Siberian craton and also in the Taimyr Peninsula, some 300 km east of a triple junction of continental rifts, now buried beneath the Mesozoic–Cenozoic sedimentary basin of western Siberia. The Norilsk-I and Talnakh-Oktyabrsky deposits occur in the Norilsk–Kharaelakh trough of the Tunguska CFB basin. The Cu–Ni–PGE-bearing mineralized intrusions are 2–3 km-wide and 20 km-long differentiated chonoliths. Previous studies suggested that parts of the magma remained in intermediate-level crustal chambers where sulfide saturation and accumulation took place before emplacement. The 5–7-km-thick Neoproterozoic to Palaeozoic country rocks, containing sedimentary Cu mineralization and evaporites, may have contributed additional metal and sulfur to this magma. Classic tectonomagmatic models for these deposits proposed that subvertical crustal faults, such as the northeast-trending Norilsk–Kharaelakh fault, were major trough-parallel conduits providing access for magmas to the final chambers. However, geological maps of the Norilsk region show that the Norilsk–Kharaelakh fault offsets the mineralization, which was deformed into folds and offset by related reverse faults, indicating compressional deformation after mineralization in the Late Triassic to Early Jurassic. In addition, most of the intrusions are sills, not dykes as should be expected if the vertical faults were major conduits. A revised tectonic model for the Norilsk region takes into account the fold structure and sill morphology of the dominant intrusions, indicating a lateral rather than vertical emplacement direction for the magma into final chambers. Taking into account the fold structure of the country rocks, the present distribution of the differentiated intrusions hosting the Norilsk-I and Talnakh–Oktyabrsky deposits may represent the remnants of a single, >60 km long, deformed and eroded palm-shaped cluster of mineralized intrusions, which are perceived as separate intrusions at the present erosional level. The original direction of sill emplacement may have been controlled by a northeast-trending paleo-rise, which we suggest is present at the southeastern border of the Norilsk–Kharaelakh trough based on analysis of the unconformity at the base of the CFB. The mineralized intrusions extend along this rise, which we interpret as a structure that formed above the extensionally tilted block in the metamorphic basement. Geophysical data indicate the presence of an intermediate magma chamber that could be linked with the Talnakh intrusion. In turn, this T-shaped flat chamber may link with the Yenisei–Khatanga rift along the northwest-trending Pyasina transform fault, which may have served as the principal magma conduit to the intermediate chamber. It then produced the differentiated mineralized intrusions that melted through the evaporites with in situ precipitation of massive, disseminated, and copper sulfide ore. The Norilsk–Kharaelakh crustal fault may not relate to mineralization and possibly formed in response to late Mesozoic spreading in the Arctic Ocean.Editorial handling: P. Lightfoot  相似文献   
988.
Composite dykes consisting of leucominette and dacite as wellas discrete dykes and flows of minette and lamproite composition,occur in the Veliki Majdan area, western Serbia. This area ispart of the Serbian Tertiary magmatic province, which consistsof numerous small occurrences of ultrapotassic igneous rocks.The composite dykes have leucominette margins (up to 150 cmthick) enclosing a central part of dacite up to 100 m in width.Between these two lithologies, a decimetre-sized transitionzone may occur. Petrography, mineral chemistry and bulk-rockgeochemistry, including Sr, Nd and Pb isotopes, provide evidencethat the minettes and leucominettes formed by hybridizationbetween a felsic magma similar in composition to dacite anda mantle-derived lamproitic magma. The leucominettes and minettescontain all phenocryst types (biotite, plagioclase, quartz)present in the dacites, but in partly resorbed and reacted form.The mica displays a great diversity of resorption textures asa result of partial dissolution, incipient melting and phlogopitization,suggesting superheating of the felsic melt during hybridization;the mineral modes and mineral compositions of the leucominettesand minettes resemble those in the lamproites. A model for themodification of lamproite melt towards minette is presentedin which minette is formed by mixing of lamproite and <30%felsic magma. The lack of any significant correlation betweenPb isotopic ratios and some of the ‘mixing-indices’(SiO2, Zr, Zr/Nb, 143Nd/144Ndi) recognized in the hybridizationmodel for the Veliki Majdan dykes may be a result of similarityof the Pb-isotopic signature in the two end-members. Highlyphlogopitized biotite xenocrysts in the minettes are ascribedto the retention of volatile components after magma mixing andcrystallization of a new generation of phlogopite from the hybridizedmagma. The magma-mixing model explains the reverse zoning andresorption features of phlogopite macrocrysts commonly recognizedin calcalkaline lamprophyres elsewhere. Therefore, this mixingmechanism may be globally applicable for the origin of minettesassociated with calcalkaline granitic plutonism in post-orogenicsettings. KEY WORDS: Serbia; lamproites; micas; phlogopitization; calcalkaline lamprophyres; superheating; magma mixing  相似文献   
989.
NIU  YAOLING 《Journal of Petrology》2004,45(12):2423-2458
This paper presents the first comprehensive major and traceelement data for 130 abyssal peridotite samples from the Pacificand Indian ocean ridge–transform systems. The data revealimportant features about the petrogenesis of these rocks, mantlemelting and melt extraction processes beneath ocean ridges,and elemental behaviours. Although abyssal peridotites are serpentinized,and have also experienced seafloor weathering, magmatic signaturesremain well preserved in the bulk-rock compositions. The betterinverse correlation of MgO with progressively heavier rare earthelements (REE) reflects varying amounts of melt depletion. Thismelt depletion may result from recent sub-ridge mantle melting,but could also be inherited from previous melt extraction eventsfrom the fertile mantle source. Light REE (LREE) in bulk-rocksamples are more enriched, not more depleted, than in the constituentclinopyroxenes (cpx) of the same sample suites. If the cpx LREErecord sub-ridge mantle melting processes, then the bulk-rockLREE must reflect post-melting refertilization. The significantcorrelations of LREE (e.g. La, Ce, Pr, Nd) with immobile highfield strength elements (HFSE, e.g. Nb and Zr) suggest thatenrichments of both LREE and HFSE resulted from a common magmaticprocess. The refertilization takes place in the ‘cold’thermal boundary layer (TBL) beneath ridges through which theascending melts migrate and interact with the advanced residues.The refertilization apparently did not affect the cpx relicsanalyzed for trace elements. This observation suggests grain-boundaryporous melt migration in the TBL. The ascending melts may notbe thermally ‘reactive’, and thus may have affectedonly cpx rims, which, together with precipitated olivine, entrappedmelt, and the rest of the rock, were subsequently serpentinized.Very large variations in bulk-rock Zr/Hf and Nb/Ta ratios areobserved, which are unexpected. The correlation between thetwo ratios is consistent with observations on basalts that DZr/DHf< 1 and DNb/DTa < 1. Given the identical charges (5+ forNb and Ta; 4+ for Zr and Hf) and essentially the same ionicradii (RNb/RTa = 1·000 and RZr/RHf = 1·006–1·026),yet a factor of 2 mass differences (MZr/MHf = 0·511 andMNb/MTa = 0·513), it is hypothesized that mass-dependentD values, or diffusion or mass-transfer rates may be importantin causing elemental fractionations during porous melt migrationin the TBL. It is also possible that some ‘exotic’phases with highly fractionated Zr/Hf and Nb/Ta ratios may existin these rocks, thus having ‘nugget’ effects onthe bulk-rock analyses. All these hypotheses need testing byconstraining the storage and distribution of all the incompatibletrace elements in mantle peridotite. As serpentine containsup to 13 wt % H2O, and is stable up to 7 GPa before it is transformedto dense hydrous magnesium silicate phases that are stable atpressures of 5–50 GPa, it is possible that the serpentinizedperidotites may survive, at least partly, subduction-zone dehydration,and transport large amounts of H2O (also Ba, Rb, Cs, K, U, Sr,Pb, etc. with elevated U/Pb ratios) into the deep mantle. Thelatter may contribute to the HIMU component in the source regionsof some oceanic basalts. KEY WORDS: abyssal peridotites; serpentinization; seafloor weathering; bulk-rock major and trace element compositions; mantle melting; melt extraction; melt–residue interaction; porous flows; Nb/Ta and Zr/Hf fractionations; HIMU mantle sources  相似文献   
990.
A large number of Mississippi Valley-Type (MVT) deposits are located within dissolution zones in carbonate host rocks. Some genetic models propose the existence of cavities generated by an earlier event such as a shallow karstification, that were subsequently filled with hydrothermal minerals. Alternative models propose carbonate dissolution caused by the simultaneous precipitation of sulfides. These models fail to explain either the deep geological setting of the cavities, or the observational features which suggest that the dissolution of carbonates and the precipitation of minerals filling the cavities are not strictly coeval. We present a genetic model inspired by the textural characteristics of MVT deposits that accounts for both the dissolution of carbonate and precipitation of sulfides and later carbonates in variable volumes. The model is based on the mixing of two hydrothermal fluids with a different chemistry. Depending on the proportion of the end members, the mixture dissolves and precipitates carbonates even though the two mixing solutions are both independently saturated in carbonates. We perform reactive transport simulations of mixing of a regional groundwater and brine ascending through a fracture, both saturated in calcite, but with different overall chemistries (Ca and carbonate concentrations, pH, etc). As a result of the intrinsic effects of chemical mixing, a carbonate dissolution zone, which is enhanced by acid brines, appears above the fracture, and another zone of calcite precipitation builds up between the cavity and the surrounding rock. Sulfide forms near the fracture and occupies a volume smaller than the cavity. A decline of the fluid flux in the fracture would cause the precipitation of calcite within the previously formed cavities. Therefore, dissolution of carbonate host rock, sulfide precipitation within the forming cavity, and later filling by carbonates may be part of the same overall process of mixing of fluids in the carbonate host rock.Editorial handling: C. Everett  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号