首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   30篇
  国内免费   138篇
测绘学   1篇
地球物理   16篇
地质学   376篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   9篇
  2018年   11篇
  2017年   15篇
  2016年   11篇
  2015年   14篇
  2014年   10篇
  2013年   27篇
  2012年   31篇
  2011年   13篇
  2010年   14篇
  2009年   13篇
  2008年   18篇
  2007年   17篇
  2006年   24篇
  2005年   16篇
  2004年   18篇
  2003年   14篇
  2002年   8篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   6篇
  1997年   11篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1987年   2篇
  1984年   1篇
排序方式: 共有396条查询结果,搜索用时 31 毫秒
91.
An intrusive granitoid pluton into TTG-Dharwar Supergroup greenstone sequence is being reported for the first time from the Dharwar Foreland region. Based on field and petrographic characteristics, these granitoids are classified as - quartz-monzodiorites and granites. Occasional mafic bodies of dioritic-granodioritic composition with size ranging from small microgranular magmatic enclaves to bodies of several centimeters are common in these granitoids.The granitoids are devoid of any crystal-plastic fabric as well as high-strain characteristics. The textural (CSD) studies indicate that the quartz-monzodiorites are derived from magma mixing whereas the granites are derived from equilibrium crystallization of the magma derived from the reworking of quartz-monzodiorites. The P-T estimates indicate that the quartz-monzodiorites were crystallized at higher temperature (>950 °C) and pressure (3.09–4.36 kbar) conditions in a reducing environment at mid-crustal levels. However, the granites indicate lower temperature (<750 °C) and pressure (0.89–1.88 kbar) conditions of crystallization in an oxidizing environment at shallow-crustal levels. The bulk rock chemical characteristics indicate that the quartz-monzodiorites were derived from the melt generated by the mixing of two melts - a melt derived from the differentiation of sanukitoids senso lato (s.l.) and a melt derived from the partial melting of TTG. On the other hand, reworking of the hot crystallizing quartz-monzodiorite due to its rapid upliftment to shallow crustal levels resulted in a decompression melting which gave rise to granitic melts.The relative age of the Dharwad granitoids is estimated to be ∼2580–2560 Ma and unlike the other older granitoids (> 2.61 Ga) reported from the northern part of the Shimoga greenstone belt, the studied granitoids marks the final stage of cratonization in the Foreland region.  相似文献   
92.
南秦岭构造带发育大规模早中生代花岗质岩体群,它们是研究源区组成和转熔矿物的选择性带入(PAE)对酸性侵入岩成分变化影响的理想对象。锆石U-Pb定年结果表明,宁陕花岗质岩体群可划分为2个期次:早期以懒板凳岩体(二长花岗岩)为代表,形成时代约为223~220Ma,对应于同碰撞阶段;晚期以胭脂坝和老城岩体(石英闪长岩-花岗闪长岩)为代表,形成时代约为211~196Ma,对应于后碰撞阶段。所有花岗质岩石样品具有SiO2含量变化大且相对含量高的特点(SiO2>68%),同时Cr、Ni含量较低,这些特征指示了岩浆演化过程中未经历明显的壳幔混合作用。在F-An-Or图解中,宁陕花岗岩样品沿着岩浆分离结晶趋势线分布,且它们的Sr-Nd同位素(87Sr/86Sr(t)=0.705348~0.705483;εNdt)值为-4.5~-4.7)组成较为均一,暗示其经历的同化混染作用较轻微。此外,元素协变图表明,宁陕花岗岩经历了角闪石+黑云母±斜长石的分离结晶。通过对比宁陕花岗岩与各种无水实验熔体,本文推测宁陕花岗岩的源区主要为杂砂岩和砂屑岩,而非玄武质地壳岩石。深成岩体的εHft)值和二阶段Hf模式年龄表明其源区主要为中元古代地壳。主、微量元素(如Ti、Ca)与镁铁指数(摩尔Fe+Mg)的协变演化进一步表明,宁陕花岗岩是由含黑云母的砂屑岩(或杂砂岩)部分熔融形成,并伴随有单斜辉石、钛铁矿、锆石、磷灰石和榍石等转熔矿物组合的选择性带入。  相似文献   
93.
华北克拉通东部中生代期间受到古太平洋板块俯冲并引发一系列的构造-岩浆-成矿作用,但古太平洋俯冲作用开始的具体时限仍未有定论。本文对辽西兴城地区中生代药王庙-磨盘山岩体进行了系统的岩相学研究、锆石U-Pb同位素定年、全岩地球化学和锆石原位Hf同位素测试分析,结果显示,花岗质岩石中岩浆成因锆石加权平均年龄为193~186 Ma,岩体侵位于早侏罗世;岩石组合为石英二长岩-花岗闪长岩-二长花岗岩-正长花岗岩;岩石全碱含量较高,属准铝-弱过铝质、高钾钙碱性系列,具有与Ⅰ型花岗岩类似的岩石地球化学特征;岩石相对富集轻稀土元素和大离子亲石元素K、Pb等,而相对亏损高场强元素Nb、Ta、Ti等及P元素;岩浆成因锆石εHf(t)值为-12.94~-7.39,Hf同位素二阶段模式年龄为2.05~1.69 Ga,其初始岩浆可能来源于古老地壳的部分熔融并可能有幔源物质的参与。辽西兴城地区早侏罗世花岗岩岩石组合、岩石地球化学特征和与俯冲作用有关的活动陆缘花岗岩特征类似,岩石形成于古太平洋俯冲作用导致的活动陆缘构造背景下,结合区域研究资料,认为古太平洋对华北克拉通东部的俯冲作用开始于晚三叠世—早侏罗世,而早侏罗世花岗质岩浆活动是古太平洋板块对华北克拉通俯冲作用的响应。  相似文献   
94.
得明顶地区花岗岩位于西藏冈底斯火山岩浆弧中段以东,主要岩石类型有:石英闪长岩、石英二长闪长岩、英云闪长岩、黑云花岗闪长岩、斑状黑云二长花岗岩,岩石具钙碱性特征,w(SiO2)在57.19%~71.78%之间,K2O/Na2O=0.39~0.98,相对富钠,A/CNK=0.80~1.02,Al2O3变化于13.64%~18.74%之间,为准铝质岩石,花岗岩体稀土元素总量ΣREE变化于94.69×10-6~227.28×10-6之间;轻稀土元素富集,负Eu异常由不明显到明显,富K,Rb,Ba,Th等大离子亲石元素和亏损Nb,Y,Yb等高场强元素为特征。岩石学和岩石地球化学研究表明,该时期的花岗岩有由中性向酸性演化的规律,为同源岩浆,具俯冲I型花岗岩的特点,形成于板块俯冲下的岛弧环境。冈底斯岩带中东段雪拉岩体花岗闪长岩锆石的SHRIMPU-Pb年龄为70.4Ma±2.2Ma,表明冈底斯岩浆弧带在白垩世从早到晚岩浆均在剧烈地活动,是新特提斯洋向北俯冲作用的产物。  相似文献   
95.
The Yunkai Terrane is one of the most important pre-Devonian areas of metamorphosed supracrustal and granitic basement rocks in the Cathaysia Block of South China. The supracrustal rocks are mainly schist, slate and phyllite, with local paragneiss, granulite, amphibolite and marble, with metamorphic grades ranging from greenschist to granulite facies. Largely on the basis of metamorphic grade, they were previously divided into the Palaeo- to Mesoproterozoic Gaozhou Complex, the early Neoproterozoic Yunkai ‘Group’ and early Palaeozoic sediments. Granitic rocks were considered to be Meso- and Neoproterozoic, or early Palaeozoic in age. In this study, four meta-sedimentary rock samples, two each from the Yunkai ‘Group’ and Gaozhou Complex, together with three granite samples, record metamorphic and magmatic zircon ages of 443–430 Ma (Silurian), with many inherited and detrital zircons with the ages mainly ranging from 1.1 to 0.8 Ga, although zircons with Archaean and Palaeoproterozoic ages have also been identified in several of the samples. A high-grade sillimanite–garnet–cordierite gneiss contains 242 Ma metamorphic zircons, as well as 440 Ma ones. Three of the meta-sedimentary rocks show large variations in major element compositions, but have similar REE patterns, and have tDM model ages of 2.17–1.91 Ga and εNd (440 Ma) values of −13.4 to −10.0. Granites range in composition from monzogranite to syenogranite and record tDM model ages of 2.13–1.42 Ga and εNd (440 Ma) values of −8.4 to −1.2. It is concluded that the Yunkai ‘Group’ and Gaozhou Complex formed coevally in the late Neoproterozoic to early Palaeozoic, probably at the same time as weakly to un-metamorphosed early Palaeozoic sediments in the area. Based on the detrital zircon population, the source area contained Meso- to Neoproterozoic rocks, with some Archaean material. Palaeozoic tectonothermal events and zircon growth in the Yunkai Terrane can be correlated with events of similar age and character known throughout the Cathaysia Block. The lack of evidence for Palaeo- and Mesoproterozoic rocks at Yunkai, as stated in earlier publications, means that revision of the basement geology of Cathaysia is necessary.  相似文献   
96.
The Ohori deposit, one of the base metal deposits in the Green-Tuff region, NE Japan, is composed of two types of mineralization; a skarn-type (Kaninomata orebody) made by the replacement of the Miocene calcareous layer, and a vein-type (Nakanomata orebody). While the ore mineral assemblage of the deposit (chalcopyrite, pyrite, sphalerite and galena) has been known for being rather simple, some Pb-Bi-S minerals have been discovered for the first time in the present study. The minerals mainly occur in the chalcopyrite-rich ores of both orebodies. They essentially belong to the Pb-Bi-S system and contain Cu and Ag in minor amounts, which correspond to the lillianite–gustavite solid solution series (phases Z and X), cosalite, neyite, felbertalite, krupkaite and Bi-bearing galena. The chalcopyrite-rich (Bi-bearing) ores from both orebodies are richer in chalcopyrite, pyrite and chlorite, and have higher homogenization temperatures (>300°C) of fluid inclusions, and higher FeS contents in sphalerite compared to the Bi-free ores. In the Green-Tuff region, Bi-minerals have been reported from many base metal deposits. Most of these Bi-bearing ore deposits are referred to as xenothermal-type deposits, and are characterized by the following common features; composite mineralization of high- and low-temperatures in the shallower environments, and close relationships with the Tertiary granitic rocks. The whole mineralization at the Ohori deposit also has a similar xenothermal character because of the coexistence of high-temperature chalcopyrite-rich ores with Pb-Bi-S minerals, which were formed by the influence of the Tertiary granitic rocks at a shallow depth.  相似文献   
97.
桂北新元古代两类过铝花岗岩的地球化学研究   总被引:24,自引:3,他引:24  
广西北部新元古代花岗岩类岩石包括黑云母花岗闪长岩和黑云母花岗岩。地球化学特征表明,黑云母花岗闪长岩与含堇青石的过铝花岗岩(CPG)相当,而黑云母花岗岩则类似于白云母二长花岗岩(MPG)。黑云母花岗岩类是成熟地宙岩石部分熔融作用的产物,而黑云母花岗闪长岩类的形成与地幔柱起源的镁铁质岩浆和地壳起源的过铝质黑云母花岗岩浆之间的混合作用有关。这两类新元古代过铝花岗岩的形成与碰撞造山导致地壳加厚的挤压性构造无关,而与导致Rodinia超大陆裂解的地幔柱上升诱发岩石圈伸展的张性构造相联系。  相似文献   
98.
The intrusive bodies studied include Mafan diorites ((462.7±1.5) Ma,40Ar/39Ar amphibole plateau age), Duhudian granites ((293±12) Ma, U-Ph zircon age) and Suxianshi granites ((146.2±0.9) Ma) in Beihuaiyang area at the northern foot of Dabie Mountains, central China. Petrological studies indicate that all of them belong to I-type granitoid rocks. Among them, the Mafan and Duhudian stocks were formed by arc magmatism, while the Suxianshi pluton is a post-collisional granitic body. Three intrusive bodies have distinctive characteristics of structural deformation. The Mafan stock has a rather complicated structure pattern resulting from polyphase deformation during the Caledonian and Mesozoic, the Duhudian stock has been pronouncedly deformed during the Hercynian-Yanshanian events, while regional foliation is not pronounced within the Yanshanian Suxianshi stock. Combination of regional stratigraphic, regional structural and geochronological data shows that the Yangtze plate has experienced two episodes of subduction northward beneath the North China plate during the Paleozoic and following collisional events. The first phase of collision at about 400 Ma resulted in the formation of the Beihuaiyang crystalline basement and the Caledonian high-pressure metamorphism in Dabie orogenic zone, and a late phase of continent-continent collision (~230 Ma) is responsible for the Triassic ultrahigh- and high-pressure metamorphism in Dabie Mountains and for orogenic uplift of the Dabie Mountains. It is suggested that the Beihuaiyang tectonic belt at the northern foot of the Dabie Mountains is a multicyclic suture.  相似文献   
99.
The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik Österreich,and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types.  相似文献   
100.
On the basis of field relations, petrography and chemistry, three types of granitoids are recognized at Malanjkhand in and around the copper deposit over an area of about 200 km2. These are (i) a fine grained ‘leucogranite’ of restricted occurrence in the surrounding area (Gr-I); (ii) coarse-grained, grey in most parts, gneissose granitoid of regional extension (Gr-II); and (iii) the pink-feldspar bearing massive type hosting the mineralization with occasional representatives in the surrounding country (Gr-III). Gr-I comes out as a distinct entity on the basis of cross-cutting relation and mineralogical and chemical composition, the Rb-Sr whole rock isochron also giving a younger age than the other two groups irrespective of the regression model used. Gr-II comes out as the oldest unit but its age relationship with Gr-III cannot be established unequivocally. An uncorrelated error regression model establishes the age relationship as Gr-I<Gr-III<Gr-II, whereas a two-error regression model establishes temporal closeness between Gr-II and III. The term ‘granitoids’ is being used broadly to include rocks ranging in composition from alkali-granite to tonalite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号