首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   88篇
  国内免费   306篇
测绘学   26篇
大气科学   4篇
地球物理   149篇
地质学   549篇
海洋学   61篇
综合类   26篇
自然地理   46篇
  2024年   1篇
  2023年   18篇
  2022年   18篇
  2021年   15篇
  2020年   25篇
  2019年   49篇
  2018年   36篇
  2017年   17篇
  2016年   56篇
  2015年   37篇
  2014年   31篇
  2013年   38篇
  2012年   43篇
  2011年   42篇
  2010年   39篇
  2009年   36篇
  2008年   28篇
  2007年   36篇
  2006年   45篇
  2005年   25篇
  2004年   30篇
  2003年   26篇
  2002年   23篇
  2001年   25篇
  2000年   12篇
  1999年   15篇
  1998年   16篇
  1997年   6篇
  1996年   10篇
  1995年   9篇
  1994年   11篇
  1993年   4篇
  1992年   9篇
  1991年   10篇
  1990年   4篇
  1989年   1篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有861条查询结果,搜索用时 15 毫秒
91.
高土石坝裂缝分析的变形倾度有限元法及其应用   总被引:1,自引:0,他引:1  
彭翀  张宗亮  张丙印  袁友仁 《岩土力学》2013,34(5):1453-1458
土石坝张拉裂缝一般由坝体的不均匀沉降变形引起,是土石坝破坏的主要诱因和表现形式之一。将基于现场沉降监测资料的传统变形倾度法进行了扩展,通过在有限元计算程序中嵌入变形倾度计算模块,发展了基于有限元变形计算的变形倾度有限元法。该方法简洁实用,方便与常规有限元变形计算相耦合,可作为在工程设计阶段分析和估算土石坝是否会发生表面张拉裂缝的实用方法。应用所发展的变形倾度有限元法,以糯扎渡高心墙堆石坝工程为例,进行了坝体后期变形引起坝体表面发生张拉裂缝的敏感性计算分析,探讨了高土石坝变形倾度的分布规律以及与坝体后期变形的关系,发现对糯扎渡高心墙堆石坝,坝顶后期沉降最大值小于坝高0.39%,可作为防止发生坝顶横向张拉裂缝的控制工况。通过工程实例的计算,说明提出的方法可用于高土石坝的裂缝预测分析。  相似文献   
92.
煤矿开采导水裂缝发育高度及影响因素分析   总被引:2,自引:0,他引:2  
煤矿开采形成的导水裂缝,一旦波及煤层上覆水体,则会导致水流入或溃入井下,直接威胁煤矿安全生产。在总结分析现有导水裂缝研究方法的基础上,以理论推导的方式并结合生产实际,分析了导水裂缝高度与煤层开采厚度、覆岩性质等因素的关系,明确了导水裂缝高度与采厚的平方根存在正比例关系。指出当基岩上覆有粘土冲积层或其他类似岩层时,极限曲率增量与岩层物理性质、厚度的关系对确定导水裂缝高度具有重要作用,当粘土冲积层厚度不小于2倍采厚时,粘土冲积层内下行裂缝穿透粘土层的可能性小,为特定条件导水裂缝分析提供了研究基础。   相似文献   
93.
当前,国家收紧地根,从严控制新增建设用地指标成为各地建设项目顺利落地的制约瓶颈。为破解这一难题,结合莱芜实际,分析了规划修编、指标利用、挖潜存量、加快供地等做法,对保障项目用地提出了建议和对策。  相似文献   
94.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
95.
Progressive rock‐fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high‐resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15‐month‐long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock‐fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3 progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls. Published in 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   
96.
裂缝发育导致的地震波场各向异性,是裂缝型油气藏的一个重要特征.然而针对该类油气藏的叠前弹性阻抗技术,一直没有通过各向异性弹性阻抗公式建立与裂缝参数的直接关系.本文在回顾封闭平行硬币状裂缝模型和线性滑动模型的基础上,将裂缝填充物性质、分布密度与围岩的横纵波速度比,引入裂缝型HTI介质弹性阻抗公式,并对相应的归一化弹性阻抗响应特征进行模拟分析.分析表明,弹性阻抗受以上三参数的影响规律存在明显差异,其中含气裂隙介质随裂缝密度的变化要明显高于对应的流体裂隙介质,流体填充裂隙介质随横、纵波速度比的变化幅度要高于对应的含气裂隙介.该结论初步为裂缝型油气藏流体识别工作提供了依据.  相似文献   
97.
研究重力式海洋平台沉箱的表面裂纹最大深度,通过考虑沉箱有一个内表面裂纹,将问题简化为无裂纹重力式平台问题和带裂纹矩形板问题的叠加,应用有限元方法对重力式海洋平台无裂纹情形进行了静力分析,得到了与裂纹位置对应处的环向拉应力。计算裂纹矩形板的应力强度因子,得到海洋环境荷载下沉箱内表面裂纹的最大深度为0.066 8m,计算结果可供海洋平台的设计参考。  相似文献   
98.
基于抗滑桩桩间土土拱效应,建立在地震作用下土拱效应的力学分析模型,在Mononobe-Okabe理论的基础上,将土拱作用等效为挡土墙作用,提出在一定地震设防烈度下土拱面上水平地震力的计算方法;在考虑滑坡推力和地震力两种外力作用下,依据桩间土在极限平衡状态下的静力平衡条件和强度条件,得出桩间净距理论计算公式.工程实例和系列试算表明,同等条件下,考虑地震作用比不考虑地震作用桩间净距要减小4% ~ 23%,由此得出不同抗震设防等级下桩间净距计算的折减系数和桩间净距直接折减计算公式,以指导抗滑桩工程设计.  相似文献   
99.
研究了单轴压缩条件下裂隙含充填与否对节理岩体力学性能的影响。以相似材料模拟脆性岩石材料制作含预置裂隙试件,在刚性试验机上对试件进行单轴压缩试验,研究了裂隙充填与否对节理岩体强度峰值及峰后塑性变形能力的影响;用有限元软件ABAQUS对试件进行断裂及损伤分析,研究了裂隙充填与否对节理岩体应力强度因子及损伤因子的影响。研究表明,在单轴压缩情况下,裂隙中含充填与不含充填相比,裂隙含充填岩体峰值强度提高、峰后塑性变形能力增强、总应变能释放率Gc降低,增大了节理岩体抵抗开裂的能力;裂隙含充填岩体环向拉应力场从分布区域及峰值都小于无充填裂隙试件;在同样外荷载作用下,裂隙含充填岩体损伤度小于无充填岩体。  相似文献   
100.
超小净距隧道爆破振动现场监测及动力响应分析研究   总被引:1,自引:0,他引:1  
朱正国  孙明路  朱永全  孙星亮 《岩土力学》2012,33(12):3747-3752
以南京地铁超小净距隧道为工程背景,结合国内外现有研究成果和规范,研究确保小净距先行隧道安全稳定的后行隧道爆破施工控制技术。以现代信息化施工理论为依据,充分运用现场监控量测,对先行隧道爆破质点振动速度进行监测分析和施工中爆破采用减振和隔振两方面控制技术;最终现场监测结果表明,优化后的循环进尺、段最大装药量与分段爆破差等爆破参数设计合理,该爆破设计在施工中未对先行隧道安全产生较大影响;同时,通过三维数值模拟计算,得到先行隧道壁面的质点振动速度随时间的变化规律,所得最大振速符合规范要求,也再次验证了优化后的爆破设计是合理的。通过数据分析得出隧道边墙的切向和径向振速比拱脚相应振速大,爆破面前方先行洞衬砌受爆破振动的影响稍大于后方衬砌,临近爆破点的左线隧道衬砌表面振动大于远离爆破点的衬砌表面振动。该研究成果为本工程施工提供了科学依据与技术指导,也可为类似隧道工程的爆破掘进工程在理论和施工方法上提供参考借鉴。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号