首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42773篇
  免费   7432篇
  国内免费   8900篇
测绘学   3758篇
大气科学   4682篇
地球物理   7330篇
地质学   25245篇
海洋学   4788篇
天文学   3394篇
综合类   2946篇
自然地理   6962篇
  2024年   175篇
  2023年   517篇
  2022年   1396篇
  2021年   1687篇
  2020年   1532篇
  2019年   1952篇
  2018年   1419篇
  2017年   1633篇
  2016年   1687篇
  2015年   1854篇
  2014年   2399篇
  2013年   2491篇
  2012年   2483篇
  2011年   2681篇
  2010年   2345篇
  2009年   2849篇
  2008年   2842篇
  2007年   2984篇
  2006年   2961篇
  2005年   2771篇
  2004年   2448篇
  2003年   2286篇
  2002年   1965篇
  2001年   1783篇
  2000年   1744篇
  1999年   1584篇
  1998年   1374篇
  1997年   948篇
  1996年   846篇
  1995年   697篇
  1994年   623篇
  1993年   540篇
  1992年   377篇
  1991年   344篇
  1990年   232篇
  1989年   174篇
  1988年   151篇
  1987年   82篇
  1986年   56篇
  1985年   43篇
  1984年   27篇
  1983年   20篇
  1982年   21篇
  1981年   10篇
  1980年   8篇
  1979年   6篇
  1978年   15篇
  1977年   5篇
  1976年   5篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   
2.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
3.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
4.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
5.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
6.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
7.
8.
对于隧道和煤矿井巷的安全掘进 ,超前预报显得特别重要。但由于掌子面前的特殊环境限制及多种干扰的严重影响 ,给隧道及井巷超前预报技术的研究带来许多困难。在瞬变电磁理论的基础上 ,引入新的电磁传播理论———电磁导弹技术 ,作为对该技术的初步探索 ,文章论证了该技术在隧道超前预报中应用的可能性 ,并提出了研究的主要内容和发展方向以及可能取得的新的技术突破和技术支撑  相似文献   
9.
We present high-resolution echelle spectroscopy of 20 stars in 16 systems catalogued as members of the TW Hydrae association, and 16 stars identified as possible new members. We have calibrated the range of coronal and chromospheric activity expected for such young stars as a function of spectral type by combining our observations with literature data for field and open cluster stars. We also compute space motions for TWA members and candidate members with proper motion measurements, using two techniques to estimate distances to stars lacking direct trigonometric parallax measurements. The mean space motion of the four TWA members with known parallaxes is  ( U , V , W : −10.0, −17.8, −4.6) km s−1  . 14 of the candidates have properties inconsistent with cluster membership; the remaining two are potential new members, although further observations are required to confirm this possibility.  相似文献   
10.
The Cassini spacecraft, en route to Saturn, passed close to Jupiter while the Galileo spacecraft was completing its 28th and 29th orbits of Jupiter, thus offering a unique opportunity for direct study of the solar wind-Jovian interaction. Here evidence is given of response of the Jovian magnetopause and bow shock positions to changes of the north-south component of the solar wind magnetic field, a phenomenon long known to occur in equivalent circumstances at Earth. The period analyzed starts with the passage over Cassini of an interplanetary shock far upstream of Jupiter. The shock's arrival at Galileo on the dusk-flank of the magnetosphere caused Galileo to exit into the solar wind. Using inter-spacecraft timing based on the time delay established from the shock arrival at each spacecraft, we point out that Galileo's position with respect to the Jovian bow shock appears to correlate with changes in the disturbed north-south reversing field seen behind the shock. We specifically rule out the alternative of changes in the shape of the bow shock with rotations of the interplanetary magnetic field as the cause.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号