首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   824篇
  免费   177篇
  国内免费   325篇
测绘学   128篇
大气科学   613篇
地球物理   186篇
地质学   194篇
海洋学   105篇
天文学   28篇
综合类   41篇
自然地理   31篇
  2024年   5篇
  2023年   13篇
  2022年   14篇
  2021年   27篇
  2020年   30篇
  2019年   49篇
  2018年   39篇
  2017年   39篇
  2016年   48篇
  2015年   41篇
  2014年   66篇
  2013年   94篇
  2012年   73篇
  2011年   59篇
  2010年   55篇
  2009年   65篇
  2008年   65篇
  2007年   73篇
  2006年   57篇
  2005年   54篇
  2004年   36篇
  2003年   37篇
  2002年   45篇
  2001年   27篇
  2000年   36篇
  1999年   30篇
  1998年   30篇
  1997年   28篇
  1996年   25篇
  1995年   14篇
  1994年   13篇
  1993年   9篇
  1992年   2篇
  1991年   10篇
  1990年   5篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1326条查询结果,搜索用时 125 毫秒
91.
由PREM地球模型计算的洛夫数   总被引:5,自引:0,他引:5  
萧耐园  夏一飞  成灼 《测绘学报》1998,27(3):246-251
本文选取迄今为止最完善的地球模型PREM,利用它所定义的地球内部基本间断面及所给物质密度的弹性等参数分布,通过求解弹性地幔运动方程,得到形变位移矢量,由此计算出二阶洛夫数。本文的理论值与观测结果符合良好。  相似文献   
92.
We consider the kinematic production of magnetic fields in a sphere by velocity fields dominated by differential rotation and spiralling convective cells. The high magnetic Reynolds number limit of Braginsky (1964) is considered and formulae are derived allowing an α-effect parametrization of such flows to be easily calculated. This permits an axisymmetric system to be investigated in parallel with the direct 3-D numerical computations. Good agreement between the asymptotic and 3-D calculations is found. The 'spiralling' property typical of convective motion in rotating spheres is important in terms of dynamo action; the differential rotation coexisting with this feature is also vital. Indeed, it is the presence of both features which allows the analysis of Braginsky to be employed. With flows approximating the columnar form anticipated for rapidly rotating convection, dynamo action is relatively easily achieved for all azimuthal wavenumbers; modes of differing wavenumbers interact almost by a simple superposition. With flows of more complex latitudinal form, the mutual interactions between modes become more complicated. For columnar-type flows, dipole magnetic fields are favoured when the sense of outward spiralling is prograde and the zonal flow is eastwards, as is physically preferred.  相似文献   
93.
The relations between sunspot numbers and earthquakes (M≧6), solar 10.7 cm radio flux and earthquakes, solar proton events and earthquakes have been analyzed in this paper. It has been found that: (1) Earthquakes occur frequently around the minimum years of solar activity. Generally, the earthquake activities are relatively less during the peak value years of solar activity, some say, around the period when magnetic polarity in the solar polar regions is reversed. (2) the earthquake frequency in the minimum period of solar activity is closely related to the maximum annual means of sunspot numbers, the maximum annual means of solar 10.7 cm radio flux and solar proton events of a whole solar cycle, and the relation between earthquake and solar proton events is closer than others. (3) As judged by above interrelationship, the period from 1995 to 1997 will be the years while earthquake activities are frequent. In the paper, the simple physical discussion has been carried out. These results supported the exploration and studies of some researchers to a certain extent. This work is supported by Foundation of the Chinese Academy of Sciences (major item).  相似文献   
94.
Summary Some important theoretical problems of the planetary-scale monsoons which have arisen from recent advances of observational studies are reviewed. These include: (1) the requirement of a strong damping mechanism in the planetary scale vorticity budget of summer monsoon and a similar but weaker requirement for the winter monsoon; (2) the localized barotropic instability of the summer monsoon which is a result of the strong zonal asymmetry of the planetary-scale flow and causes significant nonlinear energy conversions; and (3) the oscillations of the planetary-scale monsoons. It is pointed out that these problems are inter-related and their understanding is also important for the proper simulation of other scales of motion of the monsoon circulation.  相似文献   
95.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   
96.
The numerical model COUP 2D simulates the hydrological coupling between hillslopes and the river channel during a rainfall event. In order to test the numerical model, a 1:100 scaled laboratory flume which was modified to incorporate lateral hillslope elements, was used to run a series of experiments in which hillslope angle, channel angle, hillslope discharge and channel discharge were the varying parameters. Overall, there were 18 different experimental configurations with three replicates carried out for each condition, leading to a total of 54 experiments. These conditions were then used to parameterize and run COUP 2D. Internal model outputs of flow depth and flow velocity at four cross‐sections in the channel were compared to the measurements made in the physical model for the same parameter conditions. Statistical comparisons of the measured and modelled data were carried out for each experiment and across all experiments, using two goodness‐of‐fit measures—root mean square error and Nash–Sutcliffe coefficient of efficiency—in order to assess the performance of the model over an entire simulation as well as over all the simulations. The main effects on the goodness‐of‐fit measures for flow depth of each experimental variable, as well as the interactions between variables, were evaluated using statistical modelling. The results show that the model captures flow‐depth variations in response to changing channel and hillslope parameters. Statistical modelling suggests that the main effects on model error are cross‐section position, channel angle and channel discharge. Significant interactions also occur between all the channel variables and between the channel variables and hillslope discharge. The results of the testing procedure have significant implications for the consideration of different model components and for the interaction between data‐ and model evaluation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
97.
A consistent approach to the frequency analysis of hydrologic data in arid and semiarid regions, i.e. the data series containing several zero values (e.g. monthly precipitation in dry seasons, annual peak flow discharges, etc.), requires using discontinuous probability distribution functions. Such an approach has received relatively limited attention. Along the lines of physically based models, the extensions of the Muskingum‐based models to three parameter forms are considered. Using 44 peak flow series from the USGS data bank, the fitting ability of four three‐parameter models was investigated: (1) the Dirac delta combined with Gamma distribution; (2) the Dirac delta combined with two‐parameter generalized Pareto distribution; (3) the Dirac delta combined with two‐parameter Weibull (DWe) distribution; (4) the kinematic diffusion with one additional parameter that controls the probability of the zero event (KD3). The goodness of fit of the models was assessed and compared both by evaluation of discrepancies between the results of both estimation methods (i.e. the method of moments (MOM) and the maximum likelihood method (MLM)) and using the log of likelihood function as a criterion. In most cases, the DWe distribution with MLM‐estimated parameters showed the best fit of all the three‐parameter models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
98.
In this paper, there is presented an elastoplastic constitutive model to predict sandy soils behavior under monotonic and cyclic loadings. This model is based on an existing model (Cambou‐Jafari‐Sidoroff) that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule used in the deviatoric mechanism is non‐associated and a mixed hardening law controls the evolution of the yield surface. In this research the critical state surface and history surface, which separates the virgin and cyclic states in stress space, are defined. Kinematic hardening modulus and stress–dilatancy law for monotonic and cyclic loadings are effectively modified. With taking hardening modulus as a function of deviatoric and volumetric plastic strain and with defining the history surface and stress reversal, the model has the ability to predict the sandy soils' behavior. All of the model parameters have clear physical meanings and can be determined from usual laboratory tests. In order to validate the model, the results of homogeneous tests on Hostun and Toyoura sands are used. The results of validation show a good capability of the proposed model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
99.
Tian Zhou  Ted Endreny 《水文研究》2012,26(22):3378-3392
River restoration projects have installed j‐hook deflectors along the outer bank of meander bends to reduce hydraulic erosion, and in this study we use a computational fluid dynamics (CFD) model to document how these deflectors initiate changes in meander hydrodynamics. We validated the CFD with streamwise and cross‐channel bankfull velocities from a 193° meander bend flume (inlet at 0°) with a fixed point bar and pool equilibrium bed but no j‐hooks, and then used the CFD to simulate changes to flow initiated by bank‐attached boulder j‐hooks (1st attached at 70°, then a 2nd at 160°). At bankfull and half bankfull flow the j‐hooks flattened transverse water surface slopes, formed backwater pools upstream of the boulders, and steepened longitudinal water slopes across the boulders and in the conveyance region off the mid‐channel boulder tip. Streamwise velocity and mass transport jets upstream of the j‐hooks were stilled, mid‐channel jets were initiated in the conveyance region, eddies with a cross‐channel axis formed below boulders, and eddies with a vertical axis were shed into wake zones downstream of the point bar and outer bank boulders. At half bankfull depth conveyance region flow cut toward the outer bank downstream of the j‐hook boulders and the secondary circulation cells were reshaped. At bankfull depth the j‐hook at 160° was needed to redirect bank‐impinging flow sent by the upstream j‐hook. The hooked boulder tip of both j‐hooks funneled surface flow into mid‐channel plunging jets, which reversed the secondary circulation cells and initiated 1 to 3 counter rotating cells through the entire meander. The main outer bank collision zone centered at 50° without the j‐hook was moved by the j‐hook to within and just beyond the 70° j‐hook boulder region, which displaced other mass transport zones downstream. J‐hooks re‐organized water surface slopes, streamwise and cross‐channel velocities, and mass transport patterns, to move shear stress from the outer bank and into the conveyance and mid‐channel zones at bankfull flow. At half bankfull flows a patch of high shear re‐attached to the outer bank below the downstream j‐hook. J‐hook geometry and placement within natural meanders can be analyzed with CFD models to help restoration teams reach design goals and understand hydraulic impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
100.
New microstructural data on the mylonites from the well‐exposed Palmi shear zone (southern Calabria) are presented with the aim to shed light on both the kinematics and the geometry of the southwestern branch of the Alpine belt during Eocene. In the study area, located between the Sardinia–Corsica block and the Calabria–Peloritani terrane, previous large‐scale geodynamic reconstructions suggest the presence of strike–slip or transform fault zones dissecting the southwestern branch of the Alpine belt. However, there are no field data supporting the occurrence of these structures. This paper uses vorticity analysis technique based on the aspect ratio and the long axis orientation of rigid porphyroclasts in mylonitic marbles and mylonitic granitoids, to estimate the contribution of pure and simple shear of deformation during the movement of the Palmi shear zone. Porphyroclasts aspect ratio and orientation were measured on thin sections using image analysis. Estimates of the vorticity number, Wm, indicate that the Palmi shear zone recorded general shear with a contribution of pure shear of c. 65%. Then, the Palmi shear zone can be interpreted as a segment of a left‐lateral transpressive bend along the southern termination of the Eocene Alpine front. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号