首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5588篇
  免费   2135篇
  国内免费   506篇
测绘学   45篇
大气科学   58篇
地球物理   3791篇
地质学   3091篇
海洋学   386篇
天文学   335篇
综合类   53篇
自然地理   470篇
  2024年   6篇
  2023年   20篇
  2022年   29篇
  2021年   102篇
  2020年   115篇
  2019年   306篇
  2018年   494篇
  2017年   504篇
  2016年   550篇
  2015年   495篇
  2014年   511篇
  2013年   844篇
  2012年   492篇
  2011年   476篇
  2010年   395篇
  2009年   306篇
  2008年   382篇
  2007年   265篇
  2006年   291篇
  2005年   275篇
  2004年   242篇
  2003年   217篇
  2002年   200篇
  2001年   168篇
  2000年   185篇
  1999年   73篇
  1998年   47篇
  1997年   48篇
  1996年   38篇
  1995年   35篇
  1994年   24篇
  1993年   20篇
  1992年   19篇
  1991年   18篇
  1990年   15篇
  1989年   11篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
排序方式: 共有8229条查询结果,搜索用时 31 毫秒
991.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   
992.
A suite of reinforced‐concrete frame buildings located on hill sides, with 2 different structural configurations, viz step‐back and split‐foundation, are analyzed to study their floor response. Both step‐back and split‐foundation structural configurations lead to torsional effects in the direction across the slope due to the presence of shorter columns on the uphill side. Peak floor acceleration and floor response spectra are obtained at each storey's center of rigidity and at both its stiff and flexible edges. As reported in previous studies as well, it is observed that the floor response spectra are better correlated with the ground response spectrum. Therefore, the floor spectral amplification functions are obtained as the ratio of spectral ordinates at different floor levels to the one at the ground level. Peaks are observed in the spectral amplification functions corresponding to the first 2 modes in the upper portion of the hill‐side buildings, whereas a single peak corresponding to a specific kth mode of vibration is observed on the floors below the uppermost foundation level. Based on the numerical study for the step‐back and split‐foundation hill‐side buildings, simple floor spectral amplification functions are proposed and validated. The proposed spectral amplification functions take into account both the buildings' plan and elevation irregularities and can be used for seismic design of acceleration‐sensitive nonstructural components, given that the supporting structure's dynamic characteristics, torsional rotation, ground‐motion response spectrum, and location of the nonstructural components within the supporting structure are known, because current code models are actually not applicable to hill‐side buildings.  相似文献   
993.
Generally, when a model is made of the same material as the prototype in shaking table tests, the equivalent material density of the scaled model is greater than that of the prototype because mass is added to the model to satisfy similitude criteria. When the water environment is modeled in underwater shaking table tests, however, it is difficult to change the density of water. The differences in the density similitude ratios of specimen materials and water can affect the similitude ratios of the hydrodynamic and wave forces with those of other forces. To solve this problem, a coordinative similitude law is proposed for underwater shaking table tests by adjusting the width of the upstream face of the model or the wave height in the model test to match the similitude ratios of hydrodynamic and wave forces with those of other forces. The designs of the similitude relations were investigated for earthquake excitation, wave excitation, and combined earthquake and wave excitation conditions. Series of numerical simulations and underwater shaking table tests were performed to validate the proposed coordinative similitude law through a comparison of coordinative model and conventional model designed based on the coordinative similitude law and traditional artificial mass simulation, respectively. The results show that the relative error was less than 10% for the coordinative model, whereas it reached 80% for the conventional model. The coordinative similitude law can better reproduce the dynamic responses of the prototype, and thus, this similitude law can be used in underwater shaking table tests.  相似文献   
994.
Dynamic substructuring refers to physical testing with computational models in the loop. This paper presents a new strategy for such testing. The key feature of this strategy is that it decouples the substructuring controller from the physical subsystem. Unlike conventional approaches, it does not explicitly include a tracking controller. Consequently, the design and implementation of the substructuring controls are greatly simplified. This paper motivates the strategy and discusses the main concept along with details of the substructuring control design. The focus is on configurations that use shake tables and active mass drivers. An extensive experimental assessment of the new strategy is presented in a companion paper, where the influence of various factors such as virtual subsystem dynamics, control gains, and nonlinearities is investigated, and it is shown that robustly stable and accurate substructuring is achieved.  相似文献   
995.
Gully and badland erosion constitute important land‐degradation processes with severe on‐site and off‐site effects above all in sedimentary deposits and alluvial soils of the arid and semi‐arid regions. Agricultural use of the affected land is impeded both by the irreversible loss of topsoil and the morphological dissection of the terrain. In various badland regions around the world, a solution to the latter problem is attempted by infilling of gullies and levelling of badland topography in order restore a morphology suitable for agricultural cultivation. Gully and badland levelling for agricultural reclamation has been conducted for decades in the large ravine lands of India. This study aims at analysing the distribution and dynamics of land levelling within the Chambal badlands in Morena district, Madhya Pradesh, between 1971 and 2015. Using high to medium resolution satellite images from the Corona, Landsat, Aster and RapidEye missions and a multi‐temporal classification approach, we have mapped and quantified areas that were newly levelled within eight observation periods. We analysed the spatial relation of levelled land to several physical and socio‐economic factors that potentially influence the choice of reclamation site by employing geographic information system (GIS) analysis methods and results from focus‐group discussions in selected villages. Results show that nearly 38 km2 or 23% of the badlands in the study area have been levelled within 45 years. The levelling rate generally increases during the observation period, but the annual variability is high. We have found spatial relationships to badland morphology, vicinity of existing cropland and proximity to villages and drainage lines. From a socio‐economic point of view, availability of financial and technical means, access rights to the badland and ownership issues play an important role. Considering studies on soil degradation caused by levelling of badlands in other regions, the sustainability of the newly reclaimed fields in the Chambal badlands is questionable. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
996.
Anabranching rivers evolve in various geomorphic settings and various river planforms are present within these multi‐channel systems. In some cases, anabranches develop meandering patterns. Such river courses existed in Europe prior to intensive hydro‐technical works carried out during the last 250 years. Proglacial stream valleys, inherited from the last glaciation, provided a suitable environment for the development of anabranching rivers (wide valleys floors with abundant sand deposits). The main objective of the present study is to reconstruct the formation of an anabranching river planform characterized by meandering anabranches. Based on geophysical and geological data obtained from field research and a reconstruction of palaeodischarges, a model of the evolution of an anabranching river formed in a sandy floodplain is proposed. It is demonstrated that such a river system evolves from a meandering to an anabranching planform in periods of high flows that contribute to the formation of crevasse splays. The splay channels evolve then into new meandering flow paths that form ‘second‐order’ crevasses, avulsions and cutoffs. The efficiency of the flow is maintained by the formation of cutoffs and avulsions preventing the development of high sinuosity channels, and redirecting the flow to newly formed channels during maximum flow events. A comparison with other anabranching systems revealed that increased discharges and sediment loads are capable of forming anabranching planforms both in dryland and temperate climate zones. The sediment type available for transport, often inherited from older sedimentary environments, is an important variable determining whether the channel planform is anabranching, with actively migrating channels, or anastomosing, with stable, straight or sinuous branches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
997.
Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure‐from‐Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground‐based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100–300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross‐sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross‐sections. Channel erosion due to urbanization accounts for approximately 25–40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one‐third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
998.
Cohesive sediment dynamics in mountainous rivers is poorly understood even though these rivers are the main providers of fine particles to the oceans. Complex interactions exist between the coarse matrix of cobble bed rivers and fine sediments. Given that fine sediment load in such environments can be very high due to intense natural rainfall or snowmelt events and to man‐induced reservoir or dam flushing, a better understanding of the deposition and sedimentation processes is needed in order to reduce ecohydrological downstream impacts. We tested a field‐based approach on the Arc and Isère alpine rivers combining measurements of erosion and settling properties of river bed deposits before and after a dam flushing, with the U‐GEMS (Gust Erosion Microcosm System) and SCAF (System Characterizing Aggregates and Flocs), respectively. These measurements highlight that critical shears, rates of erosion, settling velocities and propensity of particles to flocculate are highly variable in time and space. This is reflective of the heterogeneity of the hydrodynamic conditions during particle settling, local bed roughness, and nature and size of particles. Generally the deposits were found to be stable relative to what is measured in lowland rivers. It was, however, not possible to make a conclusive assessment of the extent to which the dynamics of deposits after reservoir flushing were different from those settled after natural events. The absence of any relationships between erosion and deposition variables, making it impossible to predict one from another, underlined the need to measure all of them to have a full assessment of the fine sediment dynamics and to obtain representative input variables for numerical models. While the SCAF was found to be effective, an alternative to the U‐GEMS device will have to be found for the erodibility assessment in cobble bed rivers, in order to make more rapid measurements at higher shears. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
999.
To constrain the depositional age of the lowermost Nakdong Formation in the Early Cretaceous Gyeongsang Basin, SHRIMP U–Pb age determination was carried out on zircon separates. The U–Pb compositions of detrital zircons from the Nakdong Formation yield a wide range of ages from the Archean to the Cretaceous but show a marked contrast in age distribution according to the geographical locations within the basin. The provenance of the southern Nakdong Formation is dominantly the surrounding Yeongnam Massif, which is composed of Paleoproterozoic metamorphic rocks and Triassic to Jurassic plutonic rocks, whereas the central to northern Nakdong Formation records significant sediment derivation from the Okcheon Metamorphic Belt, which is distributed to the northwest, in addition to the contribution from the Yeongnam Massif. It is suggested that the maximum depositional age of the Nakdong Formation is ca 127 Ma, based on its youngest detrital zircon age population. The onset of its deposition at 127 Ma coincided with the tectonic inversion in East Asia from a compressional to an extensional geodynamic setting, probably due to the contemporaneous change in the drift direction of the Izanagi Plate and its subsequent oblique subduction.  相似文献   
1000.
The Yilan‐Yitong Fault Zone (YYFZ) is considered to be the key branch of the Tancheng‐Lujiang Fault Zone (TLFZ) in northeastern China. Although the Mesozoic and early Cenozoic deformation of the YYFZ has been studied intensively over the past century, few estimates of slip rate and recurrence interval of large earthquakes in the late Quaternary, which are the two most important parameters for understanding the potential seismic hazard of this crucial structure, were obtained. Based on integrated interpretations of high resolution satellite images and detailed geologic and geomorphic mapping, linear landforms were identified, including fault scarps and troughs, along the Shangzhi segment of the YYFZ, which exceeds 25 km in length. Synthesized results of trench excavations and differential GPS measurements of terrace surfaces indicate that two events (E1, E2) occurred along the Shangzhi segment during the late Holocene, which resulted in 3.2 ±0.1 m of total vertical co‐seismic displacement with clear features of thrust motion. 14C dating of samples suggests that event E1 occurred between 440 ±30 years BP and 180 ±30 years BP and that event E2 occurred between 4 090 ±30 years BP and 3 880 ±30 years BP, which indicates that the minimum vertical slip rate of the Shangzhi segment of the YYFZ has been approximately 0.8 ±0.03 mm/year during the late Holocene. Constraints from paleo events and the slip rate suggest that the average recurrence interval of major earthquakes on the YYFZ is 3 800 ±200 years. Historical documents in Korea show that event E1 possibly corresponds to the earthquake that occurred in AD 1810 (the Qing Dynasty in Chinese history) in the Ningguta area, which had surface‐wave magnitude (Ms) of 6.8–7.5. Studies of kinematics show that the right‐lateral strike‐slip with a reverse component has been dominant along the YYFZ during the late Holocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号