首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1335篇
  免费   214篇
  国内免费   575篇
测绘学   203篇
大气科学   36篇
地球物理   201篇
地质学   1186篇
海洋学   129篇
天文学   20篇
综合类   113篇
自然地理   236篇
  2023年   5篇
  2022年   27篇
  2021年   24篇
  2020年   53篇
  2019年   76篇
  2018年   58篇
  2017年   37篇
  2016年   65篇
  2015年   75篇
  2014年   109篇
  2013年   133篇
  2012年   105篇
  2011年   124篇
  2010年   95篇
  2009年   111篇
  2008年   115篇
  2007年   118篇
  2006年   98篇
  2005年   91篇
  2004年   100篇
  2003年   60篇
  2002年   56篇
  2001年   59篇
  2000年   52篇
  1999年   48篇
  1998年   41篇
  1997年   41篇
  1996年   18篇
  1995年   19篇
  1994年   23篇
  1993年   17篇
  1992年   11篇
  1991年   12篇
  1990年   9篇
  1989年   11篇
  1988年   3篇
  1987年   7篇
  1986年   9篇
  1985年   4篇
  1981年   2篇
  1979年   3篇
排序方式: 共有2124条查询结果,搜索用时 15 毫秒
71.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   
72.
A bounding surface model is formulated to simulate the behavior of clays that are subject to an anisotropic consolidation stress history. Conventional rotational hardening is revisited from the perspective of thermodynamics. As the free energy cannot be accumulated infinitely upon critical state failure, the deviatoric back stress must vanish. This requires the rotated yield surface to be turned back to eventually align on the hydrostatic axis in the stress plane. Noting that most of the previous propositions violate this restriction, an innovative rotational hardening rule is formulated that is thermodynamically admissible. The bounding surface framework that employs the modified yield surface is applied to simulate elastoplastic deformations for overconsolidated clays, with which the overprediction of strength on the “dry” side can be greatly improved with reasonable results. Other important features, including contractive or dilative response and hardening or softening behavior, can also be well-captured. It has been shown that the model can simulate three types of reconstituted clays that are sheared with initial conditions over a wide range of anisotropic consolidation stress ratios and overconsolidation ratios under both triaxial undrained and drained conditions. Limitations and potential improvement of the model regarding the fabric anisotropy at critical state have been discussed.  相似文献   
73.
波浪作用下单桩基础周围海床液化机制研究   总被引:1,自引:1,他引:0  
建立波浪作用下单桩周围三维海床动力响应模型,考虑自重影响下的海床长时间固结过程。采用已有物理模型试验数据对模型进行验证,证实其具有较好的适用性。模拟波浪作用下单桩周围三维海床液化区域,通过定量分析超孔隙水压力和土体初始有效应力的变化,讨论单桩插入深度对海床液化的影响机制。研究表明,单桩插入深度发生变化时,土体初始有效应力对海床液化的影响要大于超孔隙水压力,且影响程度随着插入深度的增加而逐渐增大。  相似文献   
74.
In engineering practice, a rapid loading rate can result in ground failure when the strength of soft soils is relatively low, and a multistage loading scheme is always utilized to deal with this situation. Firstly, under a multistage load and the continuous drainage boundary, an analytical solution of excess pore-water pressure and consolidation degree is obtained by virtue of the superposition formula of excess pore-water pressure, and a more general continuous drainage boundary under arbitrary time-dependent load is developed. Then, a comparison with existing analytical solutions is conducted to verify the present solution. A preliminary attempt on applying the continuous drainage boundary into the finite element model is made, and the feasibility of the numerical model for the one-dimensional consolidation under the continuous drainage boundary is verified by comparing the results calculated by FEM with that from present analytical solution. Finally, the consolidation behavior of soil is investigated in detail for different int erface parameters or loading scheme. The results show that, in land reclamation projects, a horizontal drain should be placed close to the boundary with a smaller interface parameter to improve the consolidation efficiency. The degree of consolidation is also related to the applied time-dependent load and interface parameters.  相似文献   
75.
76.
不同的GNSS采用的坐标系定义几乎相近,但参考椭球及其坐标实现不同,这将影响多GNSS融合导航定位效果。根据各GNSS坐标系所采用参考椭球的基本常数,计算比较了不同坐标系参考椭球参数的差异;导出了相应的正常重力公式,比较了这些正常重力公式确定的正常重力值差异;最后分别从坐标系统的定义与实现两个方面分析了其对定位结果的影响。结果表明:1)GPS(BDS)与Galileo和GLONASS所使用的参考椭球引起正常重力差约为0.15和0.30 mgal;2)GPS与BDS,Galileo及GLONASS所使用参考椭球引起纬度分量最大差异约为0.1 mm,3 cm和3 cm,高程分量约为0.1 mm,0.5 m和1 m;3)各GNSS所使用坐标框架间转换参数引起的坐标变化达到厘米级。  相似文献   
77.
The geometry of a fault zone exerts a major control on earthquake rupture processes and source parameters. Observations previously compiled from multiple faults suggest that fault surface shape evolves with displacement, but the specific processes driving the evolution of fault geometry within a single fault zone are not well understood. Here, we characterize the deformation history and geometry of an extraordinarily well-exposed fault using maps of cross-sectional exposures constructed with the Structure from Motion photogrammetric method. The La Quinta Fault, located in southern California, experienced at least three phases of deformation. Multiple layers of ultracataclasite formed during the most recent phase. Crosscutting relations between the layers define the evolution of the structures and demonstrate that new layers formed successively during the deformation history. Wear processes such as grain plucking from one layer into a younger layer and truncation of asperities at layer edges indicate that the layers were slip zones and the contacts between them slip surfaces. Slip surfaces that were not reactivated or modified after they were abandoned exhibit self-affine geometry, preserving the fault roughness from different stages of faulting. Roughness varies little between surfaces, except the last slip zone to form in the fault, which is the smoothest. This layer contains a distinct mineral assemblage, indicating that the composition of the fault rock exerts a control on roughness. In contrast, the similar roughness of the older slip zones, which have comparable mineralogy but clearly crosscut one another, suggests that as the fault matured the roughness of the active slip surface stayed approximately constant. Wear processes affected these layers, so for roughness to stay constant the roughening and smoothing effects of fault slip must have been approximately balanced. These observations suggest fault surface evolution occurs by nucleation of new surfaces and wear by competing smoothing and re-roughening processes.  相似文献   
78.
With the aid of integral transform techniques, this paper presents an extended precise integration solution for thermal consolidation problems of a multilayered porous thermo-elastic medium with anisotropic thermal diffusivity and permeability due to a heat source. From the fundamental governing equations, ordinary differential equations are derived by employing Laplace–Hankel transforms. By applying the extended precise integration method, equations in the transformed domain can be solved, and the actual solutions are further obtained by adopting a numerical inverse transformation. The accuracy and feasibility of the proposed theory is demonstrated by contrastive analysis with existing studies. Finally, several examples are carried out to investigate the influence of heat source’s type, axial distance, burial depth of heat source, ratio of thermo-permeability, permeability anisotropy, thermal diffusivity anisotropy and stratification on the thermal consolidation process.  相似文献   
79.
张福良  季洪伟 《地质论评》2016,62(S1):143-144
当前我国正处经济增速减缓的新常态,供给侧结构性改革应运而生。我国乃至世界的矿业更是处于发展的严冬之季,产能严重过剩,大宗商品价格持续走低。在当前形势下,我们要用新常态眼光看待矿业未来发展之路,因地制宜,着力加强供给侧改革,刻不容缓。  相似文献   
80.
The effects of low- to high-angle (>30°) normal faults on sedimentary architectural units in the Eocene Wenchang Formation, Enping Sag, Pearl River Mouth Basin (PRMB), South China Sea were investigated utilising a high-quality 3D seismic data set and restored paleogeomorphology. It has been shown that sequence stratigraphic units and sedimentary architecture are significantly controlled by the low- to high-angle normal faults. The Wenchang Formation, a second-order sequence, can be subdivided into two para-second-sequences (the Lower and Upper Wenchang sequences, E2WL and E2WU) and seven third-order sequences (from base to top: SQ1~SQ7). The low-angle fault confined sequence architecture of the Wenchang Formation is mainly characterised by lateral stacking with the ratio of the vertical subsidence (V) to horizontal slip (H) being reduced from 1/2 for E2WL to 1/6 for E2WU. In contrast, the high-angle fault confined sequence is characterised by vertical stacking with the ratio of V/H close to 1 for sequences SQ1 to SQ7. In the 3D seismic area, the features of sediment-dispersal pattern were interpreted based on an integrated analysis of paleogeomorphology, seismic reflection characteristics, stratal thickness distribution and multiple attribute clustering. The results show that the large-scale fan delta, belt-shape lacustrine deposit and bird-foot braided delta systems mainly developed in the low-angle fault confined sequences, whereas small-scale fan delta, rhombus-shaped lacustrine deposit and lobe-shaped braided delta systems inherited tectono-sedimentary architectures in the high-angle fault confined sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号